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Appendix 1: Proofs of Theoretical Results

Section 1.1

Claim: If s = 0 and m > 2¢ > 0, then the inter-alliance competition between two same-function

alliances has only a symmetric mixed strategy equilibrium.

Proof: If each firm in alliance i and alliance j invests 0, then the payoff of player & in alliance i is
0. If firm k deviates unilaterally and invests either ¢/2 or ¢, the firm’s payoff is m/2 - ¢/2 or m/2 - c,
respectively.

If investing O is an equilibrium, then

0-(m/2-c/2)20
and

0-(m/2-c)=20.
The second inequality implies that 2c > m. But this violates our assumption that m > 2c. Therefore,
investing 0 is not a symmetric equilibrium

We next show that investing ¢/2 is not a symmetric equilibrium. Suppose that each firm in
alliance i and alliance j invests ¢/2. Then the payoff for firm k is - ¢/2. But if firm k unilaterally deviates
and invests O or c, then its payoff is 0 or m/2 — c respectively. For investing ¢/2 to be a symmetric
equilibrium, the following two equations need to be satisfied:

-¢/220
and

-c/22m/2 - c.
The second inequality is violated if m > 2c. Hence contributing ¢/2 is not a symmetric equilibrium.

Now suppose that each player invests c. Then in equilibrium the following 2 inequalities must be
satisfied for investing ¢ to be a symmetric equilibrium:

-c20
and

-c2-c/2.
Again the second inequality is violated if 2c > 0. Hence, contributing c is not a symmetric equilibrium.

Thus, the inter-alliance competition does not have a symmetric pure strategy equilibrium when s
=0and m > 2c > 0.

Section 1.2



Claim: If s = m/2 and 4c > m > 2¢ > 0, then the inter-alliance competition between two same-
function alliances has only a symmetric mixed strategy equilibrium. (Note: If m > 4c, then the pure

strategy equilibrium is to invest ¢ as m/4 > c).

Proof: If each firm in alliance i and alliance j invests 0, then the payoff of player k in alliance i is
m/4. If firm k deviates unilaterally and invests either ¢/2 or ¢, the firm’s payoff is m/2 - ¢/2 or m/2 - ¢
respectively.

If investing 0 is an equilibrium, then

m/4 2(m/2 - c/2),
and

m/4 2 (m/2 - c).
The first inequality implies that 2c > m. But this violates our assumption that m > 2c. Therefore investing
0 is not a symmetric equilibrium

We next show that investing ¢/2 is not a symmetric equilibrium. Suppose that each firm in
alliance i and alliance j invest ¢/2. Then the payoff for firm k is m/4 - ¢/2. But if partner k unilaterally
deviates and invests 0 or c, then its payoff is 0 or m/2 - c¢. For investing ¢/2 to be a symmetric
equilibrium, the following two equations need to be satisfied:

m/4 - c/2 20,
and

m/4 -c/22m/2 - c.
The second inequality is violated if m > 2¢. Hence contributing ¢/2 is not a symmetric equilibrium.

Now suppose that each player invests c. Then in equilibrium the following 2 inequalities must be
satisfied for investing c to be a symmetric equilibrium:

m/d-c20
and

m/4-c2 -c/2
The first inequality is violated if m < 4c. Hence, contributing ¢ is not a symmetric equilibrium.

Thus, the inter-alliance competition does not have a symmetric pure strategy equilibrium when s

=m/2and4c>m>2c>0.

Section 1.3



This section derives the system of equations that provide the equilibrium solution when partners
in a same function alliance share profits equally.
Consider players i; and i, in alliance i. Player i, could be involved with player i, in any of the 5

games presented below, depending on the sum of inputs of the partners in alliance j, U(j) (U(j) = {0, c/2,

¢, 3¢/2, 2¢)).

If U(j) = 0:
Player i,’s investment
c c/2 0
Player i;’s c m/2-c, m2-c m/2-c, m/2-c/2 m/2 - c, m/2
Investment c/2 m/2-c/2, m/2-c m/2 -¢/2, m/2 - ¢/2 m/2 - ¢/2, m/2
0 m/2, m/2 -c m/2, m/2 - ¢/2 s/2,s/2
If UGG) = ¢/2:
Player i;’s investment
c c/2 0
Player i;’s c m/2-c,m/2-c m/2 -c, m/2 -c/2 m/2 - ¢, m/2
Investment c/2 m/2-c/2, m/2-c m/2 -¢/2, m/2 - c/2 8/2 -c/2, m/2
0 m/2, m/2 -c /2,82 -c/2 0,0
If UG) =c:
Player i,’s investment
c c/2 0
Player i;’s C m2-c,m/2-c¢ m/2-¢, m/2-c/2 s/2-c,s/2
Investment c/2 m/2-c/2, m/2-c sf2-¢/2,s/2-c/2 -¢/2,0
0 s/2,s/2 ¢ 0,-c/2 0,0
If U(j) = 3¢/2:
Player i,’s investment
c c/2 0
Player i;’s C m/2-c,m/2-c s/2-c,s/2-¢l2 -c,0
Investment c/2 m/2-c/2, m/2-c¢ -¢c/2,-cl2 -¢/2,0
0 0,-c 0,-c/2 0,0




If U(j) = 2c:

Player i,’s investment

c c/2 0
Player i,’s C s/2-c,s/2-c¢c -c,-cl2 -c,0
Investment c/2 -cl2,-c -cl2,-cl2 -c/2,0
0 0,-c 0,-c/2 0,0

To construct the expected value of investing 0, ¢/2, or ¢ by firm i, in the collaboration, we need
to consider partner i,’s investment behavior (I;; = {0, ¢/2, ¢]) along with the behavior of the competing
alliance, U(j) (U(j) = {0, ¢/2, ¢, 3c¢/2, 2c}). In a symmetric equilibrium, the distribution of strategies is
identical for all the players. Recall that we denote the probability of a player investing 0, c, and ¢/2 units
of capital by p,, p,, and p;, respectively. The joint probability of all players, except player i, is provided
in Table 5 below.

Table 5: Same-Function Alliance

The Joint Probabilities (All players except player i, of alliance i)

uG)
0 c/2 c 3c/2 2c
c Pspi° [2pip2aps [ PsQ2pips+p2’) 2ps P2 Py’
Player i c/2 p2pi° 2pipa” p2(2pips+p2’) 22 ps p2ps
0 Pl3 2P12P2 pi(2p P3+P22) 2 pi p2p3 [311333
Marginal | p,* 2pip2 2pips+p2’) 2paps Py’

We denote the expected value of contributing 0, ¢/2, and ¢ by EV(0), EV(c/2), and EV(c),

respectively. Using Table 5, we compute the expected values of investing 0, ¢/2, and c.

EV(0) = 5/2 (p/’) + m/2 (p2p/°) + m/2 (ps pit) + s/2 (2 py pi*) + m/2 (2 p; p2 p3)
+5/2 (p3) (2 p1 ps + p2’) + c.

EV(c/2) = m/2 (p/’) + m/2 (papl’) + m/2 (ps plf) + s/2 (2 p/’ pa)
+m/2(2p;p’) + m/2(2p, paps) + s/2(p2) (2 p; ps + pi)
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+m/2(ps) (2p1 ps + i) +5/2(2pi’ pa) + /2

EV(c) = m/2 (p/’) + m/2 (p2 pi°) + m/2 (ps p*) + m/2 (2 p/py) + m/2 (2 p, py°)
+m/2(2p;p2ps) + /2 (p1) (2 pips + pi’) + m/2 (p2) (2 pi ps + p’)
+m/2 p3 (2 p1 ps + pi) + $/3 (2 pt ps) + m/2 (2 ps pa) + /2 (p5).

As EV(c/2) - EV(0) = 0, we have:

(s/2)(2p;° pa +P23+2P/P2P3+2P2P32'P13'2P1P22
p2ips2pipst)+ (m2) (pr  + 2pipst 4 p2 i ps+ 2pipst) = 2

As EV(c) - EV(c/2) = 0, we have:

(5/2)(P1p22+2P12P3+P33'2P12P2'P23'2p21732+2P22p3
2pipapy) + (m/2) (2p1pa+pa’ +2paps’ +2pipaps) = 2

If s = 0, then after some algebra we cab show that the equilibrium probabilities are the solution of the

following system of equations:

p]'?+2p1p22+p22p3+2p1p32 = ¢/m, (A])
2pPpa+p’ +2pyps’ +2ppaps =c/m, (A2)
Pl+p2+p3=1- (A3)

Section 1.4

Claim: In same-function alliances, if partners share profits equally, then:
p1 > p2> p; if 0.375>c¢/m > 0.244

p1 > p3> ps if 0.244 > ¢/m > 0.228
p3 > p; > p2if 0.288 > c¢/m > 0.

Proof: First we show that p; > p, for ¢/m < 0.375.



Substituting p; = I - p, - p; in Equation A1, we obtain:

pirl+2pip® +p2’(1-pi-p2)+2pi(1-p;-p2)° -c/m=0.
Let p; = p, +d,. Therefore,

(2 +61)° + 2 (p2 +81) p2° + p2 (1 - p2 -1 - p2) + 2 (p2 +J1) (1 - p2 -y - p2) ?

-c/m=0 (A4)
Similarly, we substitute p; = I - p; - poand p, = p, +J; in Equation A2 to obtain:

2p2+8) 2 p2+p2’ +2pa(1-p2-61-p2)°-2(p2+81) (p2+d1) (1 - p2-6; - p2)

-ce/m=0 (AS5)
Using Equations (A4) and (AS), we solve for the value of ¢/m when J,=0.
If 4;=0, then ¢/m = 0.375 and this solution is unique. Note that if ¢/m = 0.4, then J; = -0.029 < 0. But, if
¢/m = 0.05, then £,=0.0004 > 0. Therefore, p; > p, for ¢/m < 0.375.

Second, we show that p; > p; for ¢/m < 0.228.
Let p; = (p; +J7). Substituting p, = I - p; — p; and p; = (p; +J3) in Equation A1, we obtain:

(ps +8) 7 +2(ps +) (1-2p3-8) * + (1 - 2p5- &) * (ps + ) + 2 (p3 +62) ps°

-c/m=0 (A6)
Similarly, we substitute p, = I - p; — p;and p, = p; + J; in Equation A2 to obtain:

1-3p; +5ps* = 3ps’ =3 (ps + ) + 4 ps(ps+ &) - 3ps’ (ps + &) + 5 (p; +0))

-3pi(ps+ &S -3(ps+ )’ -c/m=0 (A7)
Using Equations A6 and A7, we solve for the value of ¢/m when &,=0. If &,=0, then ¢/m = 0.228 and this
solution is unique. Further, if ¢/m = 0.2, then &, = - 0.399 < 0. But if ¢/m = 0.25, then &, = 0.193 > 0.
Therefore, p; > p, for ¢/m < 0.228.

Finally, we show that p; > p, V'¢/m < 0.244: Let p, = (p; +J;). We substitute p, = I — p, — p;and
p2 = p; + d; in Equation Al to obtain:

1-3ps+5pst—3ps’=3(ps+8)+6ps(ps+8)—5ps’ (ps +6)



+5(py+d) 7 =4 (ps+d) 7 =3 (ps+d) —c/m=0 (A8)
Similarly, we substitute p; = I — p, — psand p, = p; + &; in Equation A2 to obtain:

2(ps+3) - 65 (ps +) + 6 p3° (ps +83) =4 (s +63) °

+6ps(ps )7 + 3 (ps +3)° (A9)
Using Equation A8 and A9, we solve for the value of ¢/m when J;=0.
If £;=0, then ¢/m = 0.244 and this solution is unique. We also find that if ¢/m = 0.25, then J; = 0.03 > 0.
Also, if ¢/m = 0.2, then d;= - 0.433 < 0. Therefore, p; > p, for ¢/m < 0.244.

Using the three results above, we conclude that:

p1>p2> ps if 0.375>c/m > 0.244
p1>p; > pa if 0.244 > c/m > 0.228
p; > p; > pa if 0.288 > c/m > 0.

Section 1.5

Claim: If partners in same-function alliances share profits equally, then: ap; <0; 2 >(; and

d< d<
m m
d
P 5 0Vp, e (0.084,0.475)-
Cc
d X
m
d
Proof: First, we establish that P2 50 and & <0.
c c
d— d—
m m

From Equations A1l and A2, we have:
F' (p1, P2 p3; c/m) =P13+2P1P22+P22P3+ 2p,p32—c/m =0
F (p1, p2 p3 c/m)=2p;Ppr+p  +2papst+ 2pipaps—c/m =0
Asp;=1-p, - p;, we have:
F'(py ps; c/m)=1-3p,+5p2°=3p’ —=3ps+6paps—4p’ ps+5ps’=5p2ps’

-3pi—c/m=0

F(ps, ps; c/m)=3p;° +2p:° (ps2=2)+2ps (1 -ps + ps°) —c/m =0,



or or'
apz ap3

oF* oF*
dp, op,

=6-30p, +57p," ~48p,’ +18p," =26, +100p, p ~134p,"p; +54p,"p, +
441’32 —110p, p32 +87p22p32 - 381’33 "'36!’21733 "’18[734

As IJ|involves terms raised to the power of 4, we plot |J|for p, € (0,1)and p, e (0,1). In Plot 1, it is
evident that |J| >0 for p, e (0,1)and p, € (0,1).

Plot 1.
We have
1
[ oF
op,
AR
1 oF
op;,

=3-8p, +6P22 —10p;+14p,p, ‘*’91732



We know that Mim'mun|J,,2 l = MinIJI,2 | = Mpfn{Mianz l}

P2:P3 Palps)

A

=-10+14p, +18p,.
ap;

1
Hence the min value of |J | | with respectto p, will be when py = —(5-7p,)
P 3 k 9

Min|J |=L@-2p,+5p,2)>0,¥ p, € (O)
nl7g

P3(p2)
Therefore, lJ f’zl >0
dp, IJI’*I
Hence, =—>0,Vp,e (0.

d_C__ Ml
m

oF'
op,

1

[J,,3|= oF*

op,

1

=-5+18p, —18p," +8p, ~12p,py —7p;’

Maximum)J , | = Max|J , | = A/Ipz:x'iMax‘Jp] q

Paop
B py(py)

el

=-8-12p, —14p,.
aPs '

Hence the max value of |J p]| with respectto p, will be when p, = —%(3p2 -2)

Max|/ | =—;—(78p2 —90p,> ~19)<0V p, & (0,)

pi(p2)

Therefore, IJI,SI <0

J
Hence, QL = I—p’—| <0,V p,e(0]).
a5 Vi

m
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dp,
d<

m

Now, we prove that

> 0. Again from equations Al and A2, we have:

F'(p, popsyc/m)=p;” +2pip2> +p2’ps+2pips’~c/m =0

F?(p1, pa ps; ¢/m)=2p,;°pa+p2” +2p2ps° +2p paps—c/m =0

Asp,=1-p, - p;, we have:

F! (p1, p3; ¢/m) = p; Tt 2P1p32 +2pl(p;+p;- 1)2 + p;(p; +P3—1)2—C/’" =0

F‘Z(p,,p3;c/m)=]—3p,+5p12~3p12—3p3+8p,p3—7p,2p3+5p32
-7plps’=3ps°—c/m =0
oF' oF'

9, I,

oF? oF*
dp, 9p,

=-3+12p,-21p,> +24p’ —18p,* +18p, —48p, p, +44p’p, -18p,’ p, -
2 2 2 2 3 3 4
48p;” +80p,py” —=33p,"py” +62ps” —48p,py;” =33p; .

As |J|involves terms raised to the power of 4, we plot ]J|for p,€(0,1)and p, e (0,1). We find that
|7| < Oin Plot 2.

Next, we have
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=-2(2-7p, +6P|2 —7py +13p,p, +6P32

We know that Max J, = Max[J, |= Max{Max J, }
! PP ! 4 !

ppy)
aJ,
—=-2(-7+12p, +13p,).
ap, |
Therefore, the max value of J, with respect to p; will be when p =E(7—13p3 )

1
MaxJpl|=E(l—14p, +25p.%)

pi(py)

Max\J

pi(py)

<0, V p e (0.084,0.475)

J
Therefore, 9P — A >0,V p,e (0.084,0.475)
P
m

Section 1.6

This section outlines the system of equations that provides the equilibrium solution for the
proportional profit-sharing arrangement in a same-function alliance. Our purpose is to compare the
investment behavior under equal and proportional profit-sharing arrangement. We denote the expected
value of investing 0, ¢/2, and ¢ by EV(0), EV(c/2), and EV(c) respectively. Using Table 5 above, we

compute the expected values of investing 0, ¢/2, and c.
EV(0) = s/2 (p/’) + ¢

EV(c/2) = m (p/) + m/2 (pp/’) + m/3 (ps pil) + (2 p/° pa) + m/2 (2 p; ps’)
+m/3(2p;paps) +5/2(p2) (2pips+ Pzz) +m/3 (p3) (2 p; ps + 1722)
+ /3 (2 ps pa) + /2

EV(c)=m (p/’) + 2m/3 (p2pi) + m/2 (ps pil) + m (2 p/’pa) + 2m/3 (2 p; pi’)
+m/2 (2 p1paps) +5(p1) (2pips+pl)+2m/3 (ps) (2 pi ps + pi’)
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+m/2 ps (2P, ps + pit) +2 5/3 (2 ps ps) + m/2 (2 ps’ pa) + /2 (ps').
Simplifying, we obtain that the equilibrium solution is given by the following system of three equations:

EV(c/2) - EV(0) = 0,
EV(c) - EV(c/2) = 0, and
pr+p2+p3=1

By setting s=0, we obtain the following system of three equations:

2(p7 + 172 (p)2pa) + pip2’ + 173 (p)° ps) + 2/3 (py p2ps)
+ 1/3 (p3) (p’ + 2 pi1ps)) —c/m=0 (A10)

2. + 83 (pi°p2) + 43 pip2’ + 172 (p,? p3) + pi pa ps
+ 1/3 (p2ps3) (Pzz +2pip3)) - Z(Plj + 172 (P12P2) + P Pzz +1/3 (P12P3)
+2/3(pipaps) + 173 (p3) (pi* + 2y p3)) —c/m =0 (All)

p[+p2+p3=1. (A]Z)

Equations A10-A12 provide the equilibrium solution for the inter-alliance game where partners share the

profits proportionally.

Section 1.7

Claim: In same-function alliances if partners share profits proportionally, then:
p3 > p; >p; for0<c/m<0.5.
Proof: First we show that p; > p, for 0 < ¢/m < 0.5.
Let p; = p, +J,. We substitute p; = I - p; - p,, and p; = p, +J; in Equation A10 and obtain:
2(1/3pl=1/3p + 2/3(py +0; ) = 2/3 p2(p2 +J; ) + 23 ps° (p2+6, ) - (P2 +6; ) +
5/6 pr(p2 +3; )V + 43 (p2+6;))—c/m=0 (Al13)

Similarly, we substitute p; = I - p, - p,and p; = p, +J; in Equation A1l to obtain:
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2(ps -7/3pl +4/3p,° + 13 p," —1/3p°—2/3 (p, +6,)— 1/3 (p2 +61 )

+5/3pF (24, ) + 43 p’ (p2+1) = 8/3 p" (p2 +8)) + p’ (p2+) )

+3/2(p2+6, ) + 8/3p2(p2+1 ) —4pi’ (p2+J; ) + 43 p) (p2+6;

+4/3p2" (p2 461 ) = 5/6 (2 +6, ) =4 pa (p2 +6, )

+8ps (p2+61 ) =8/3ps (p2+, ) + 4 p2(p2+6; )

4ps (p2+6 ) =43 p2(p2+d )’ )—c/m=0 (Al4)
Using Equations A13 and A14, we solve for the value of ¢/m when J,=0. If 4,=0, then ¢/m = 0.625 and
this solution is unique. Note that by definition m > 2c¢, and hence only ¢/m < 0.5 is feasible. We know
that as m > 0 and ¢ > 0, and so ¢/m > 0. Therefore, p, and p, do not intersect if 0 < ¢/m < 0.5. For
instance, if ¢/m = 0.25, then J; = 0.16 > 0; and if ¢/m = 0.125, then J; = 0.074 > 0.
Hence, p; > p; for 0 <c/m < 0.5.

Second, we show that p; > p, for ¢/m < 0.5.
Let p, = p; +4,. Substituting p, = I - p; — p;and p; = p; + &, in Equation A10 we obtain:

2(1/3ps=2/3ps +1/3ps + (ps + &) -2 ps(ps + &) + 5/3ps” (2ps + &)

—32(ps+ &) +32ps(ps+ &)° + 32 (ps-6)°) -c/m=0. (Al5)
Similarly, substituting p, = I - p; — p;and p, = p; + & in Equation A1l we obtain:

22ps =103 ps* + 5/3ps° = 1/3p® + 1/3 (ps + &) — 4/3 ps (ps + &)

+ 1773 pi (ps+ &)° = 14ps’ (ps + &) + 32/3 p5’ (ps + &)

-3p3’ (ps+ 8)7+ 3/2(ps+ 8)° + 43 ps(ps + 6)°

- 14p3 (ps+ &) + 58/3 ps’ (ps + 8) 7 = 26/3 ps’ (ps + 8)°

-11/6(ps+ &)° = 10/3ps (ps + &) + 32/3p5° (ps + &)

-26/3p5 (ps+ &)’ + 53 ps(ps+ &) =3ps (ps+ A)?

—13ps(ps+&)°) -c/m=0 (Al6)
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Using Equations A15 and A 16, we solve for the value of ¢/m when d,=0. We find that ;=0 only if ¢/m=
0. Butas ¢ > 0, and m > 0, ¢/m = 0 is not feasible. Therefore, p; and p, do not intersect if 0 < ¢/m < 0.5.
For example, if ¢/m = 0.25, then &, = - 0.36 < 0; and if ¢/m = 0.125, then &, = -0.739 < 0. Hence, p; > p,
for 0 < c/m<0.5.

Third, we can show p; > p, for ¢/m < 0.5.
Let p; = (p; +d3). Substituting p, = / — p, — p;and p; = p; + J; in Equation A10, we obtain:

2(8/3p;—4/3 p3> = 5/2 (ps +83) + S p3 (ps +8) — 19/6 p3* (ps +63)

+3(ps+8)° =3 ps (s +) = 3/2(ps+8)" ) —c/m =0 (A17)
Similarly, we substitute p; = I — p, — p;and p, = p; + J; in Equation Al1 to obtain:

2(1/6 ps - 5/2 p33 + 13/6 (p; +3) - 13/3 p3 (p3 +3) + 23/6 p; 2 (p; +63)

+4/3p3” (ps +0) = 8/3ps” (ps +8) + 43 p;” (ps +d)) — 4 (ps +)°

+7/2ps(ps +83) 2~ 8/3p;° (ps +d3)° + 8/3 3 (ps +3)* + 11/6 (ps +63)°

+4/3p;7(ps+5)° = 4/3p; (ps+8)  + 1/3ps(ps +83)° —c/m =0 (A18)
Using Equation A17 and A18 we solve for the value of ¢/m when d;=0. Again, we find that p; and p, do
not intersect if 0 < ¢/m < 0.5. Note that if ¢/m = 0.25, then &, = - 0.523 < 0; and if ¢/m = 0.125, then &, =
-0.813 < 0. Hence, p; > p, for 0 < ¢/m < 0.5.

Taken together these results prove that p; > p, >p, for 0 < c¢/m < 0.5.

Section 1.8

Claim: In same-function alliances, if partners share profits proportionally, then:

dp3 <O; dp2 >O; dpl >0‘
i~ d= d=

m m m

Proof: First, we prove that ap; <0 and apy >0-
d< d<

m m
From Equations A10 and All, we have:
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F' (p), pa p3; c¢/m) = 2(p/° + 172 (p, 2pa) +pipt+ 173 (pi° p3)

+2/3(pip2ps) + 173 (p3) (p" + 2 pips)) —c/m =0

F 1, P2 P3; /m) = 2(p,3 + 8/3 (p,zpz) + 4/3 p,p22 + 1/2 (p,zp_;)
+pip2ps + 1/3 (p2ps) (p2° + 2 pi p3))

- 2(1713 + 172 (PIZPZ) + pi P22 +1/3 (P12P3) +2/3(pi1p2ps)
+1/3(ps) (p2’ + 2 p1p3)) = c/m =0

Asp,=1-p, - p;, we have:
F' (ps, ps; ¢/m)=2~3ps’ =6 pi* (ps—1)— 16/3 p; + 6 p5* — 8/3 p5’

+p2(10ps—19/3ps=5) =0

F2 (pa, ps; ¢/m)=1/3 (p3 + 2p25p3— 6 pi’ - 8p’ pi + Spi+ps (11 + 8pi’)
+p2 (2] ps— 16 ps* + 16 ps* - 24) + p, (13- 26 ps + 23 p + 8 ps’ — 16 ps* + 8 ;)
-3c¢/m=0

As these implicit functions involve terms raised to the power of 4, we use plots to draw inferences.

or' or!
apz apz .
oF* oF*
op, dp,

Vl=




We know that m > 2¢ > 0. Therefore, 0.5 > ¢/m > 0. Using A10, All, and A12, we find that p, < 0.35

for ¢/m < 0.5. Plot 3 below presents the value of |J|V p, € (0,0.35), p;& (0,1). We observe that |J|>0.

Next, we have

Ip, '
oF*
ap;

ol =
]

(7777 7 7D
ZZ77777 1 7
Y, g EH
LTI T T 77 Bl
AL TS 7
AT AITTT T T I
LR LTFALTT T FF,

Plot 4.

In Plot 4, we again notice that IJ‘Dz |> 0V p, e (0,1), p5€ (0,1).

J
Hence, —dp—2 = ll > 0.
PR
m

Finally,

oF' )

apz
ljpalz "

oF 1

ap,

Plot 5.




From Equations A15 and A16, we find that p/ < 0.4. Plot 5 shows that |jp‘|< 0,V p, € (0,1), py€ (0,1).

J
Hence, dp; _ '——ﬁ—l <O0.
PR
m
J
Similarly, we computed —dp—C' =’—|jpi—‘. We know from Equations A15 and A16 that p; < 0.5 and p; > 0.3
d=

m
In Plot 6 below, we present the comparative static. The region that takes negative values is not part of the
equilibrium solution. For instance, if p; = 0.361 then p; = 0.442 (¢/m =0.33); if p; = 0.161 then p; =
0.786 (¢/m = 0.17); if p; = 0.087 then ps = 0.885 (¢/m = 0.1).

Plot 6.

d,
Hence, LC’ >0, if p; and p; constitute equilibrium probabilities.

d—
m

Section 1.9
Claim: When partners develop new products in parallel and agree to share profits equally, the

inter-alliance game has only a symmetric mixed strategy equilibrium if m > 2¢, s = 0, and ¢ > 0.

Proof: If each firm in alliance i and alliance j invests 0, then the payoff of player & in alliance i is
0. If firm k deviates unilaterally and invests either ¢/2 or c, the firm’s payoff is m/2 - ¢/2 or m/2 —c,

respectively.

If investing O is a symmetric equilibrium, then

18



0 2m/2 - c/2,
and

0=2m/2 - c.
The second inequality implies that 2 ¢ > m. But this violates our assumption that m > 2c¢. Therefore,
investing O is not a symmetric equilibrium

We next show that investing ¢/2 is not a symmetric equilibrium. Suppose that each firm in
alliance i and alliance j invest ¢/2. Then the payoff for firm k is - ¢/2. But if k unilaterally deviates and
invests 0 or ¢, then its payoff is 0 or m/2 - c. For investing ¢/2 to be a symmetric equilibrium, the
following two equations need to be satisfied:

-¢/2 20,
and

-c/22-c+ m/2.
The second inequality is violated if m > 2c¢. Hence, contributing ¢/2 is not a symmetric equilibrium.

Now suppose that each player invests c¢. Then in equilibrium the following two inequalities must
be satisfied for investing ¢ to be a symmetric equilibrium:

-c20
and

-c2-c/2.
These inequalities are violated if ¢ > 0. Hence, contributing c is not a symmetric equilibrium.

Thus, this inter-alliance competition does not a symmetric pure strategy equilibrium when s =0,

m > 2¢, and ¢ > 0.

Section 1.10
Claim: When partners develop new products in parallel and share profits equally, the inter-

alliance game has only a symmetric mixed strategy equilibrium if s = m/2, 4c > m > 2¢ > 0.

Proof: If each firm in alliance / and alliance j invests 0, then the payoff of player  in alliance i is
m/4. If firm k deviates unilaterally and invests either ¢/2 or c, then the firm’s payoff is m/2 - ¢/2 or m/2 —

¢, respectively

If investing O is an equilibrium, then
m/4 2m/2 - c/2,

and
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m/4 2m/2 - c.
The first inequality implies that 2c > m. But this violates our assumption that m > 2c. Therefore,
investing 0 is not a symmetric equilibrium

We next show that investing ¢/2 is not a equilibrium. Suppose that each firm in alliance i and
alliance j invest ¢/2. Then the payoff for firm k is m/4 - ¢/2. But if k unilaterally deviates and invests O or
c, then its payoff is 0 or m/2 - c. For investing ¢/2 to be a symmetric equilibrium, the following two
equations need to be satisfied:

m/4 -c/2 20,
and

m/4 -c/22m/2 - c.
The second inequality is violated if m > 2c. Hence contributing ¢/2 is not a symmetric equilibrium.

Now suppose that each player invests ¢. Then in equilibrium the following 2 inequalities must be
satisfied for investing ¢ to be a symmetric equilibrium:

m/4 - c 20,
and

m/4-c2-c/2.
Again these inequalities will be violated if 4c > m. Hence, contributing c is not a symmetric equilibrium.

Thus, this inter-alliance competition does have not a symmetric pure strategy equilibrium when

s=m/2,and4c>m>2c>0.

Section 1.11

In this section we derive the system of equations used to solve for the equilibrium solution when
partners develop products in parallel and share profits equally.

The joint behavior of the competing alliance, j, and partner i, is given in Table 6 below. Using
this information, as we did earlier, we compute the expected value of investing 0, ¢/2, or ¢ by partner i, in

alliance i.
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Table 6: Parallel Development of New Products

Joint Probabilities (All players except partner i, in alliance i)

Max{lj,, 1j2}

0 c/2 C
c ps (p1”) Ps2pip2+p>) | P2 pips+2papatps)
Player i;’s o2 P2 (p1) PA2pip2+p2) | P22 pips+2paps+tps)
Investment 0 P’ pPi(2 i P2+ pr) P2 P ps+2p2ps+ ps)
Marginal P 2pip2+ps 2pips+2p2ps+ps

Using these probabilities we computed the EV(0), EV(c/2), and EV(c).

EV(0)=(s/2) pi’ + m/2 (p; pi* + ps pi’) + (5/2) (p2) (2 pi1 p2 + p°)
+ (m/2) (p3) (2 p1 p2 + pi’) + (5/2) (p3) (2 py ps + 2 p2 ps + pi) + c.

EV(c/2) = (m/2) P13 + m/2 (p; P/z + P3 P12) +(s/2) (p1+p2) 2pip2+ ,Dzz)
+ (m/2) (p3) (2 1 p2 + pi’) +(5/2) (p3) (2 py ps + 2 pa ps + pi) + ¢/2.

EV(c)=(m/2) p/} + (m/2) (2 p1 pa + pi’) + (s/2) (2 ps ps + 2 p2 p3 + pi) + /2.
As EV(c/2) - EV(0) = 0, we get:

(m/2-5/2) pi’ + s/2 (p1) (2 ps p2 + pi*) = /2
Similarly, as EV(c) - EV(c/2) = 0, we get:

(m/2 = 5/2) (p1+ p2) (2 p1 p2 + p2°) + (5/2) (p1+ p2) (2 p1 ps + 2 pa ps + pi’) = c/2

By setting s = 0 we obtain the following system of three equations that provide the equilibrium solution:
(m2) p;° = /2 (A19)
(m/2) (p1+ p2) (2 p1 p2 + p2’) = ¢/2 (A20)
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pr+p2+p; =1 (A21)
Section 1.12

Claim: The mixed strategy equilibrium solution for the competition between parallel alliances, if

partners share profits equally, is: p, = 3\/E p,= B3 < and p,=1-(0+ B)3‘/Z where f§=0.32471.
m m m

Proof: From Equation A19, we obtain that p, = x\/z

m

Now substituting this result in Equation A20, we obtain:
c f c c

(3\/:"' P ]+[2(3 —)p, +P; )—_zo'
m m m

Solving this equation, we find that p, = f.3 £ where B =0.32471.
m

Then substituting the values of p; and p, in Equation A21, we find that p, =1-(1+ B).: <.
m

Section 1.13

Claim: Under equal profit-sharing arrangement, partners developing products in parallel free

ride (p, =3 i) more often than those in same-function alliance ( p, < 2 < ).
m m

Proof: We have already shown that in parallel alliances partners sharing profits equally will

invest O units of capital in proportions given by p, =3 £ (see Section 1.12).
m

f c . . .
Now we proceed to show that p < 3/— in the case of same-function alliances, where partners share
m

profits equally. We know from Equation A1 that

p13+2p[}722+p22p3+2p1p32 = ¢/m
Therefore,

pil=c/m—(2p,pt +p:lps+2pipi).
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As {p., pa p3} € (0,1), we have:

p1° < c/m.

Hence, p, < %/E in case of parallel alliances where partners share profits equally.
m

Section 1.14

In this section we present the system of equations for studying the equilibrium behavior if
products are developed in parallel and profits are shared in proportion. Denote the expected value of
contributing 0, ¢/2, and ¢ by EV(0), EV(c/2), and EV(c), respectively.

Using Table 6, we compute the expected values of investing 0, ¢/2, and c.
EV(0)=s/2(p/) + ¢

EV(c/2) = (m) i’ + (m/2) (p2 pi’) + (m/3) (ps pi°) +(s) p1 (2 pi p2 + p7°)
+(5/2) p2 (2 p1 pa + pit) + (M/3) s (2 p1 pa+ ) + (/3) ps (2 pi ps + 2 pa ps + pi) + /2

EV(c) = (m) p/’ + (2m/3) (p2 p/) + (m/2) (ps p/°) +(m) p; (2 p; p2 + p2°)
+(2m/3) p2 (2 p;p2 + Pzz) +(m/2) ps (2p; p2+ Pzz) +(s)pi1(2pips+2pps+ P32)
+(25/3)p2(2p,ps+2pps + p32) +(s/2)p; (2pips+2p2ps+ p32)

The system of three equations that provides the equilibrium solution is:

EV(c/2) - EV(0) =0
EV(c) - EV(c/2) =0
pr+p2+ps=1

After setting s = 0, we obtain the following system of equations:

pr+ 172 (papl’) + 173 (ps pit) + (173) ps (2 py p2 + po’) = c/m (A23)

((2/3) (p2 p/*) + (172) (p3 pi°) + p1 (2 ps P2 + P°)

+(2/3) p2(2 pips+ pit) + (1/2) p3 (2 py p2+ pi) )

—((172) (p2 pi%) + (173) (p3 pi’) + (1/3) ps (2 ps p2 + ) = ¢/m (A24)
23



pr+pr+pi=1 (A25)

Section 1.15

Claim: In case of parallel alliances where partners share profits proportionally, we observe that:
p1 > p; >p2if 0.5 > ¢/m >0.26,
p3 > p; >p2if 0.26 > ¢/m >0.042,

ps > p2 > p; if 0.042 > c/m >0.

Proof: First, we show that p; > p, for ¢/m > 0.0837.
Let p; = p, +d,. We substitute p; = I - p; - p,, and p, = p, +J; in Equation A23 and obtain:

13 p2 =173 + 2/3 (py +61 ) —p2(p2 +6, ) + 1/3 (p2 +61 )°

<12 pa(p2+6; )2+ 23 (p2+6 )V —c/m=0 (A26)
Similarly, we substitute p; = I - p, - p,and p; = p, +J; in Equation A24 to obtain:

1/6 p + 172 p;’ + 1/3 py (p2 +63) + 11/6 p;’ (p2 +81) + 1/6 p;’ (p; +J))

+5/3ps(p2+8 P -1/6py(p+6, ) —c/m=0 (A27)
Using Equations A23 and A24, we solve for the value of p, when 4;=0. If J,=0, then ¢/m = 0.042 and
this solution is unique. Further, if ¢/m = 0.08, then J; = 0.067 > 0. But, if ¢/m = 0.0 then J; < 0. Hence,
p1 > p2 forc/m > 0.042.

Second, we show that p; > p, for ¢/m < 0.26.
Let p, = p; +d,. Substituting p, = I - p; — p;and p, = p; + & in Equation A23, we obtain:

2(1/3p;=2/3ps +1/3ps° + 172 (ps + &)° = 112 ps (ps + &)°

+122p;+ &)°)—c/m=0 (A28)
Similarly, substituting p, = I - p; — p;and p; = p; + & in Equation A24, we obtain:

2(2/3-11/6 ps + /3 pi + 172 pi’ +1/3 (ps + &) - 2/3 ps (ps + &)
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+1/3p (s + )= 1/2(ps+ & + 1125 (ps + &) - 1/2(ps + 8) )

-¢/m=0 (A29)
Using Equations A27 and A28, we solve for the value of ¢/m when &,=0.

If 5,=0, then ¢/m = 0.26 and this solution is unique. Further, if ¢/m = 0.286, then J, = 0.044 > 0.
But, if ¢/m = 0.25 then &, = - 0.017 < 0. Hence, p; > p; for ¢/m < 0.26

Third, we can show p; > p, for 0 < ¢/m < 0.5.
Let p, = (p; +d3). Substituting p; = I — p, — p;and p, = p; + J; in Equation A23, we obtain:

2(7/3p;2=8/3ps+7/3p;2=2/3ps° = 5/2(p; +83) - 5 ps (ps +65)

~ 5/2ps7(ps+83) + 2(ps +81) 7 = 2ps(ps +85)* = 1/2 (ps +))

-~ c/m=0 (A30)
Similarly, we substitute p; = I — p, — p;and p, = p; + J; in Equation A24 to obtain:

2(1/6 p;-1/2ps* + 1/6 ps* +13/6 (ps +63) - 13/3 ps (ps +&5) + 13/6 p;* (p; +3)

- 2(ps+d) 7+ 2ps(ps +3)° + 1/2(ps +8) ") —c/m = 0 (A31)
Using Equation A29 and A30, we solve for the value of ¢/m when d;=0. We find that p; and p, do not
intersect if ¢/m < 0.5. For instance, if ¢/m = 0.4, then d; = - 0.072 < 0; and if ¢/m = 0.071 then &, = -
0.516 < 0. We know that as m > 0 and ¢ > 0, and so ¢/m > 0. Therefore, p; > p, for 0 < ¢/m < 0. Taken
together these results prove that:

p1 > p; >p2if 0.5 > ¢/m >0.26,

p3;>p; >p2if 0.26 > ¢/m >0.042,

p3: > p2>p; if 0.042 > ¢/m >0.

Section 1.16

Claim: For parallel alliances where partners share profits proportionally: dps <0; ap, >0
a< 4=
m m
ap, > 0.
d<
m
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Proof: First, we prove that aps 0,V p,e (0,1) and ap, 0,V p, e (0,1)-
c : c :
d— d—

m m
From Equations A23 and A24, we have:

F' (p1, pa p3; ¢/m) = p + 172 (p, p/’) + 1/3 (ps pi°) + (1/3) p3 (2 py p2+ p2’)
—c/m =0

F (1, p2 p3; c/m) =((2/3) (p. Plz) +(172) (p; P12) +pi(2pip2+ Pzz)
+(2/3) p2 (2 p1p2+ pi) + (172) ps (2 pi p2 + pi) )
—((1/2) (p2 p*) + (173) (p3 pi°) + (1/3) p3 (2 p1 p2+ p7°)) —c/m =0

Substituting p; = I — p; - p; in these equations we obtain F' (p2 p3; ¢/m) and F? (P2, p3; c/m).

or or
dp, 9p;

oF? oF*
op, 9p;

=1/36 (p, —1)(360p, —207p,> +36p,” +497p, —576p, p, +153p," p, —415p,’
—216p,p,> +111p,’ —193)

In Plot 7 below we present|J|for p, € (0,1)and p, € (0,1). We observe that |J| >0.

26



oF'

1
ap;

ljr'zlz
oF*

1
op 3

=%(17—56p2+24p§—32p3+56p2p3+15p§)
Using Equations A13 and Al4, we find that if ¢/m < 0.5, p, < 0.21. In Plot 8 below we

presentl],,: { forp, e (0,0.21)and Py € (0,1). Note that \Jpz’ <0.

7
SV,
SZHZ
X L7
---....

Plot 8
We already know that |J| > 0. Hence, _‘!!Lz_zlji 0.
PR
m
o
ap,
IJ,,_, I -
oF? .
dp,

1
=§(24P2 -9p,° +28p, —24p,p, —14p.’ _14)

In Plot 9 below we present‘] P | for p, € (0,0.21)and p, € (0,1). Note that IJ p3| <0.
Plot 9.
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Hence, dp; —|j”‘|<0

XY
m
dp, _ )
Next, we prove that — >0.Asp,=1-p, - p;3 we have:
d—
m

F'(py, psic/m)=p,”° + 1/2p,° (1-ps - p3) +1/3 (p1 % p3)

+173(2p;(1-p; -ps) + (1-p;-ps) ) ps—c/m =0

Fz(,Ph p3; c/m)=p;(2p,;(1-p;-p3)+ (1 -P:-P3)2)
+1/6p; 2 (1-py-ps) +2/3 (2 p,i(1-pi=p2) +(1-pi-p3)° ) (1-pr ps)
+1/6(p; ps)+ 1/6(2p,(1-p; -ps) + (1-p1-p3)}) ps—c/m =0

o ar!
op, 9p,

oF* oF*
apl ap3

1

=g (P =@ +54p, +99p, +36p," =20p, —72p,p; =45p," p +

28p,> +18p,p,° —12p,")

Plot 10 below presents the value of |J|V p, € (0,1, p,€ (0,1). Note iJ|< 0.

Plot 10.
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| oF'

)
V,,.l= | 3?2
dp,

(-13-4p, +6p,> +28p, +4p,p, ~15p,")

QN —

Using Equations Al15 and A16, we find that if ¢/m < 0.5, then p, < 0.56. In Plot 11 we
present|/ , [for p, € (0.0.56)and p, € (0.1). Note that |/, |< 0.

Plot 11.

Section 17

Section 1.17 has three parts: Section 1.17a proves that the asymmetric game has only a mixed
strategy equilibrium, if partners share profits equally; Section 1.17b derives the system of equations that
provide the corresponding equilibrium solution; Section 1.17c presents the system of equations that provide
the equilibrium solution, if partners share profits proportionally.

Section 1.17a:
Claim: If s =0, m > 2 ¢ > 0, ¢y= ¢j;= ¢/2, and ¢;; = ¢j; = ¢, then the inter-alliance competition

between two same-function alliances, where partners share profits equally, only has a symmetric mixed

strategy equilibrium.



Proof: First, we establish that there is no symmetric pure strategy equilibrium for the weak
players irrespective of the symmetric pure strategies played by the strong players. Later, we show that
there exists no symmetric pure strategy equilibrium for the strong players irrespective of the symmetric
pure strategy played by the weak players.

Suppose that the strong players in both alliances i and j invest ¢ units of capital (/;; = I;; = ¢).

Also suppose that the weak players in both alliances invest ¢/2. Now the payoff for the weak player in
alliance i is - ¢/2. But if the weak player in alliance / unilaterally deviates and invests 0 or ¢/4, then its
payoff is 0 or — ¢/4, respectively.

If investing ¢/2 is a symmetric equilibrium for the weak players, then

-c/220
and

-¢/2 > - c/4.

Both these inequalities violate the assumption that ¢ > 0. Therefore, investing ¢/2 is not a symmetric
equilibrium for the weak players.

Now suppose that the weak players in both alliances invest ¢/4. Also suppose that the strong
players in both alliances i and j invest ¢ units of capital. The payoff for the weak player in alliance i is -
c/4. But if the weak player in alliance i unilaterally deviates and invests 0 or ¢/2, then its payoff is 0 or
m/2 - ¢/2 respectively.

If investing ¢/4 is a symmetric equilibrium for the weak players, then

-c/420
and

-c/4d>m/2 - /4.

The second inequality violates the assumption that m > 2¢. Therefore, investing ¢/4 is not a symmetric
equilibrium for the weak players.

Now suppose that the weak players in both alliances invest 0. Also suppose that the strong
players in both alliances i and j invest ¢ units of capital. Now the payoff for the weak player on alliance i
is 0. But if the weak player in alliance i unilaterally deviates and invests c/4 or ¢/2, then its payoff is m/2
— c/4 or m/2 - ¢/2 respectively.

If investing O is a symmetric equilibrium for the weak players, then

0 >m/2 - c/4,
and

0>m/2-c/2.
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Both these inequalities violate the assumption that m > 2c¢. Therefore, investing 0 is not a symmetric

equilibrium for the weak players.

Next suppose that the strong players in both alliances i and j invest 3¢/4 units of capital. Also

suppose that the weak players in both alliances invest ¢/2. Now the payoff for the weak player in alliance
i is - ¢/2. But if the weak player in alliance i unilaterally deviates and invests O or ¢/4, then its payoff is 0
or — ¢/4 respectively.

If investing ¢/2 is a symmetric equilibrium for the weak players, then

-c/220
and

-¢/2 > - c/A.

Both these inequalities violate the assumption that ¢ > 0. Therefore, investing ¢/2 is not a symmetric
equilibrium for the weak players.

Now suppose that the weak players in both alliances invest ¢/4. Suppose that the strong players
in both alliances i and j invest 3¢/4 units of capital. Now the payoff for the weak player in alliance i is -
c/4. But if the weak player in alliance i unilaterally deviates and invests 0 or ¢/2, then its payoff is O or
m/2 - ¢/2 respectively.

If investing ¢/4 is a symmetric equilibrium for the weak players, then

-c/420
and

-c/4>m/2 - c/4.

The second inequality violates the assumption that m > 2¢. Therefore, investing ¢/4 is not a symmetric
equilibrium for the weak players.

Next, suppose that the weak players in both alliances invest 0. Suppose that the strong players in
both alliances i and j invest 3¢/4 units of capital. Now the payoff for the weak player in alliance i is 0.
But if the weak player in alliance / unilaterally deviates and invests ¢/4 or ¢/2, then its payoff is m/2 — c¢/4
or m/2 - ¢/2 respectively.

If investing O is a symmetric equilibrium for the weak players, then

02m/2 - c/4,
and

0>m/2-c/2.

Both these inequalities violate the assumption that m > 2c¢. Therefore, investing 0 is not a symmetric

equilibrium for the weak players.
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Similarly, we find that there is no symmetric pure strategy equilibrium for the weak players,
when both the strong players invest ¢/2, ¢/4 or O units of capital. Hence, there is no symmetric pure
strategy equilibrium for the weak players, irrespective of whether both the strong players invest ¢, 3c/4,
¢/2 ¢/4 and 0 units of capital.

Second, we proceed to establish that there is no symmetric pure strategy equilibrium for the

strong players. Suppose that the weak players in both alliances i and j invest ¢/2 units of capital (/;; = I},

= ¢/2). Also suppose that the strong players in both alliances invest c. Now the payoff for the strong
player in alliance i is - ¢. But, if the strong player in alliance i unilaterally deviates and invests 0, c/4, ¢/2,
or 3¢/4 then its payoff is 0, - ¢/4, - ¢/2, or -3c/4.

If investing c is a symmetric equilibrium for the strong players, then

-¢c 20,

-c2>-c/M,

-c¢ 2-¢/2, and

-¢ 2-3c/4.

These inequalities violate the assumption that ¢ > 0. Therefore, investing ¢ is not a symmetric
equilibrium for the strong players.

Now suppose that the strong players in both alliances invest 3c/4. Suppose that the weak players
in both alliances i and j invest ¢/2 units of capital. So, the payoff for the strong player in alliance i is -
3c/4. But if the strong player in alliance i unilaterally deviates and invests 0, ¢/4, ¢/2, or c then its payoff
is0, - ¢/4, - ¢/2, or m/2 - c.

If investing 3c/4 is a symmetric equilibrium for the strong players, then

-3c/4 2 0,

- 3c/4 2 -c/4,

- 3c/4 2 -¢/2, and

-3c/4 2 m/2 - c.

The last inequality violates the assumption that m > 2c. Therefore, investing 3c/4 is not a symmetric
equilibrium for the strong players.

Now suppose that the strong players in both alliances invest ¢/2. Suppose that the weak players
in both alliances i and j invest ¢/2 units of capital. So, the payoff for the strong player in alliance i is —
¢/2. But if the strong player in alliance i unilaterally deviates and invests 0, ¢/4, 3c/4, or c then its payoff
is 0, - c¢/4, - ¢/2, m/2 - 3c/4, m/2 — c.

If investing ¢/2 is a symmetric equilibrium for the strong players, then

32



-c/22 0,

-c/2 2 -c/4,
-c/2 2 m/2 - 3c/4, and
-c/22 m/2-c.

The last two inequalities violate the assumption that m > 2c. Therefore, investing ¢/2 is not a symmetric
equilibrium for the strong players.

Now suppose that the strong players in both alliances invest ¢/4. Suppose that the weak players
in both alliances i and j invest ¢/2 units of capital. Therefore, the payoff for the strong player in alliance
is — c/4. But if the strong player in alliance i unilaterally deviates and invests 0, ¢/2, 3c/4 or c then its
payoff is 0, - m/2 - ¢/2, m/2- 3c¢/4, or m/2 - c.

If investing c/4 is a symmetric equilibrium for the strong players, then

-c/4 2 0,

-c/4 2 m/2-c/2,

-c/4 2 m/2 - 3¢/4, and

-c/42> m/2-c.

The last three inequalities violate the assumption that m > 2¢. Therefore, investing ¢/4 is not a symmetric
equilibrium for the strong players.

Now suppose that the strong players in both alliances invest 0. Suppose that the weak players in
both alliances i and j invest ¢/2 units of capital. Therefore, the payoff for the strong player in alliance i is
0. But if the strong player in alliance i unilaterally deviates and invests ¢/4, c/2, 3c/4, or c then its payoff
is m/2 —c/4, m/2 - ¢/2, m/2 - 3c/4, or m/2 - c.

If investing 0 is a symmetric equilibrium for the strong players, then

02 m/2-c/4,

02 m/2-c/2,

0> m/2 - 3c/4, and

0= m/2-c.

The last inequality violates the assumption that m > 2c. Therefore, investing 0 is not a symmetric

equilibrium for the strong players.

Next suppose that the weak players in both alliances i and j invest ¢/4 units of capital (/;; = I;; =

c/4). Also suppose that the strong players in both alliances invest c. Now the payoff for the strong player
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on alliance i is - c. But if the strong player in alliance / unilaterally deviates and invests 0, ¢/4, ¢/2, or
3c/4 then its payoff is 0, - ¢/4, - ¢/2, or -3c/4.

If investing ¢ is a symmetric equilibrium for the strong players, then

-c2 0,

-c 2 -c/4,

-¢ 2 -¢/2, and

-c2 -3c/4.

These inequalities violate the assumption that ¢ > 0. Therefore, investing c¢ is not a symmetric
equilibrium for the strong players.

Now suppose that the strong players in both alliances invest 3c¢/4. Suppose that the weak players
in both alliances i and j invest ¢/4 units of capital. So, the payoff for the strong player in alliance i is —
3c/4. But if the strong player in alliance i unilaterally deviates and invests 0, ¢/4, ¢/2, or c then its payoff
180, - c/4, - ¢/2, orm/2 - c.

If investing 3¢/4 is a symmetric equilibrium for the strong players, then

-3c/4 2 0,

-3c/4 2 -c/4,

- 3c¢/4 2 -¢/2, and
-3c/42 m/2-c.

The last inequality violates the assumption that m > 2¢. Therefore, investing 3c/4 is not a symmetric
equilibrium for the strong players.

Now suppose that the strong players in both alliances invest ¢/2. Suppose that the weak players
in both alliances i and j invest ¢/4 units of capital. So, the payoff for the strong player in alliance i is —
¢/2. But if the strong player in alliance i unilaterally deviates and invests 0, c/4, 3¢/4, or c then its payoff
is 0, - c/4, - ¢/2, m/2 - 3c/4, m/2 - c.

If investing ¢/2 is a symmetric equilibrium for the strong players, then

-c/22 0,

-¢/2 2 -c/A,

-¢c/2 2 m/2 - 3¢/4, and
-c/22 m/2-c.

The last two inequalities violate the assumption that m > 2¢. Therefore, investing ¢/2 is not a symmetric

equilibrium for the strong players.
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Now suppose that the strong players in both alliances invest ¢/4. Suppose that the weak players
in both alliances i and j invest ¢/4 units of capital. So, the payoff for the strong player in alliance i is —
c/4. But if the strong player in alliance / unilaterally deviates and invests 0, ¢/2, 3¢/4 or ¢ then its payoff
180, - m/2 - ¢/2, m/2- 3c/4, or m/2 - c.

If investing ¢/4 is a symmetric equilibrium for the strong players, then

-c/4 20,

-c/4 2 m/2-c/2,

-c/4 2 m/2 - 3c/4, and

-c/42 m/2-c.

The last three inequalities violate the assumption that m > 2¢. Therefore, investing ¢/4 is not a symmetric
equilibrium for the strong players.

Now suppose that the strong players in both alliances invest 0. Suppose that the weak players in
both alliances i and j invest ¢/4 units of capital. Therefore, the payoff for the strong player in alliance i/ is
0. But if the strong player in alliance i unilaterally deviates and invests ¢/4, ¢/2, 3c/4 or c then its payoff
ism/2 —c/4, m/2 - ¢/2, m/2 - 3c/4, or m/2 - c.

If investing O is a symmetric equilibrium for the strong players, then

02 m/2 - c/4,

02 m/2-c/2

02 m/2 - 3c/4, and

02 m?2-c.

The last inequality violates the assumption that m > 2¢. Therefore, investing 0 is not a symmetric
equilibrium for the strong players.

Similarly, we find that there is no symmetric pure strategy equilibrium for the strong players, if
both the weak players invest O units of capital. Hence, there is no symmetric pure strategy equilibrium for
the strong players, irrespective of whether both the weak players invest ¢/2 ¢/4 and 0 units of capital.

Therefore, in this game with asymmetric investment capital there is no symmetric pure strategy

equilibrium.

Section 1.17b

In this section we derive the system of equations that provide the equilibrium solution for the
competition between two same-function alliance, if players share profits equally but ¢;;= ¢j;= ¢/2, and ¢;;
=Cp=C
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We denote the probability of the strong player contributing 0, ¢/4, ¢/2, 3¢/4 and c by p,, p2, ps P+
and ps, respectively. Similarly, we denote the probability of the weak players investing 0, ¢/4, and ¢/2 by

g1 g, and g3, respectively. Using this notation we present in the table below the joint probabilities.

Table 7: Same-function Alliance (Asymmetric Players within an alliance)

Joint Probabilities (All players except i, in alliance i)

UuG)
0 c/4 /2 3c/4 c 1Vac 15 ¢
0 P (A | pr(Piqz+ | Pr(pigs+ | pr(psqs+ | Pr(PsQr+ | Pr(Psds+ | Py
P29, psd; + P59z + psqz + Psd2) (ps9s)
P2q2) P2qs) P3qs)
c/4 p2(p:a) | P2(Piq2+ | P2(piqs+ | P2 (p«qs+ | P2 (Psds + | P2 (P4Qs + | P2
P29, psq: + psq: + psq + Psd2) (psqs)
P2q2) P243) Psds)
Playeriy’s | c/2 ps (P1qs) | Ps(PiG2+ | P3(piqs+ | Ps (PeQs+ | P (Psqs + | Ps (PaQs+ | Ps
Investment P2q1) psqs + psqz + P42 + Psd2) (ps93)
P292) p293) P3qs)
3c/4 P+ (/1) | Pa (P92 + | Pa(piqs+ | pa(peds+ | Ps(Psqs + | P+ (PsQs + | P4
P2q1) Psq; + psqz + P4z + Psq2) (psqs)
P2q2) P2q3) Ps9s)
c ps (P:q1) | Ps (P92 + | Ps(piqs+ | ps(psqs+ | Ps(Psqs + | Ps (PsQs + | Ps
P2q1) psq; + psq2 + P«qz + Psq2) (Psqs)
P292) P293) Psq3)
Marginal | (p;q;) (pig2 + (psgs + (p4qs + (psqs + (psqs + (psq3)
P2q:) psq; + psqz + P«q: + Psq2)
P292) P29s) Ps9s)

Using these joint probabilities, we next compute the expected value of contributing 0, ¢/4, and ¢/2 by the
weak player in alliance i. We denote these expected values by EV**(0), EV***(c/4), and EV***(c/2),

respectively. We also know that p; + po+ ps+ ps+ ps = 1.

EV*4(0) = (1-p)) (p1q1) (m/2) + (1-p1-p) (P1q2 + p2q1) (m/2)

36



+ (1-p1-p2-p3) (m/2) (p,q3 + p3q; + p2q>)
+ (1-p1=p2-p3-ps) (M/2) (psq) + P32 + P2q3) + /2.

EV*“Nc/d) = (piq) (m/2) + (1-p1) (p1q: + p2qy) (m/2)
+ (1-pip2) (m/2) (p1q3 + P3q:1 + P2q2)
+ (1-p-p2-p3s) (m/2) (p4q; + p3q2 + p2q3)
+ (1-p1-p2-ps-p4) (M/2) (psq; + paq2 + p3q;) + c/4.

EV¥(c/2) = (piqi) (m/2) + (pigs + p2qi) (m/2) +  (1-p1) (m/2) (piqs + psq; + paq2)
+ (1-p1=p2) (M/2) (p4q) + p3q2 + p2q3) + (1-p1-p2-p3) (M/2) (psq; + paq2 + p2qs)
+ (1-p1-p2-p3-p4) (M/2) (p4qs + Psq2).

Similarly, in Table 8 below we present the joint probabilities for all players except player i, in alliance i
Table 8: Same-function Alliance (Asymmetric Players within an alliance)

Joint Probabilities (All players except i, in alliance i)

U(j)
0 cl4 c/2 3c/4 C 1Yac 1Y2¢
0 q; QP+ | 9P+ | q(paqr + | 9 (psqr + | qs (p4q3 + | Qs (Psq3)
(pqr) | p2q1) psq; + p3q; + P4 + Psq2)
P292) P293) P393)
c/4 q Q2 (ps92+ | Q2 (P95 + | Q2 (P«Qs + | 2 (psqs + | Q2 (P«qs + | 92 (Psqs)
(p/qs) | P291) psq; + psq: + P2+ | psq2)
p292) p293) P393)
. c/2 q; Q3 (P92 + | 93 (P13 + | Qs (PsQs + | Q3 (Psqs + | Qs (P43 + | Q3 (P5Q3)
Playeri,’s (prqr) | P90 psq: + P92 + p«2 + Psqz)
Investment p2q2) P2qs) P3qs)
Marginal | (p,q;) | (p/q: + (pras+ | (paqs+ | (psqs + (psqs + (ps9s)
p291) psqs + P9z + p«Q2 + psqz)
P292) P293) P393)

Using these joint probabilities, we next compute the expected value of contributing 0, ¢/4, c/2 3c/4, ¢ by
the strong player in alliance i. We denote these expected values by EV""(0), EV"""*(c/4), EV™™"(c/2),
EV*""(3c/4), and EV""™"(c), respectively. We also know that g,+ g, + g; = 1.

EV™0) = (1-q)) (piq1) (m/2) + (1-q,-q2) (P1q2 + p2q.) (m/2) + c.

EV"™"(c/4) = (piq1) (m/2) + (1-q)) (p1ga + paqs) (m/2)
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+ (1-q1-q2) (m/2) (p1q; + psq; + p2q2) + 3c/4.

EV™(c/2) = (p1qi) (m/2) + (p1q2 + p2q1) (m/2) + (1-q;) (m/2) (piq3 + P3q1 + P2q2)
+ (1-q,-q2) (m/2) (psq; + p3q2 + p2q3) + c/2.

EV'""(3c/4) = (p1q1) (m/2) + (192 + p2q1) (m/2) + (m/2) (piqs + P3q; + P2q2)
+ (1-q;) (m/2) (paq) + P3q2 + p2q3) + (1-q,-q2) (M/2) (psq; + paq2 + p3q3) + c/4.

EV'"™(c) = (piq) (m/2) + (p.q: + p2q;) (m/2) +  (m/2) (p1q3 + P3q; + P2q2)
+ (m/2) (paq1 + P3qz + p2q3) + (1-q,) (m/2) (psq; + paq2 + P3q3)
+ (1-q,-q2) (m/2) (psqs + psq2).

The following system of system of 8 equations provides the equilibrium solution (namely, p;, p ps ps

Ps 41, g2 and g3):

EV**(c/4) - EV**}0) = 0,
EV*®™(c/2) - EV***(c/4) = 0,
EV™%(c/4) - EV""%(0) = 0,
EVS™"(c/2) - EV""8(c/4) = 0,
EV"%(3c/4) - EV'""%(c/2) = 0,
EV™8(c) - EV""%(3¢/4) = 0.
Qi+ @:+q3=1,

P+ D2+ ps+pitps=1

Section 1.17¢

In this section we present the system of equations that provide the equilibrium solution for the
competition between two same-function alliance, if players share profits proportionally but ¢;;= ¢;;= ¢/2,
andc; =cp =c.

We use the joint probability tables (Tables 7 and 8) presented in section 1.17b to derive the
following expected values.

EV*0) = ¢/2.
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EV*“Nc/d) = pi(piqi) (m) + (p2) (p1q1) (m/2) + (p3) (p1qs) (m/3)+ (pa) (p1q.) (m/4)
+ (ps)(piq1) (m/5) + (p2) (p1q2 + p2q1) (m/2) +(p3) (192 + P2q1) (M/3) +(p4) (P1q:

+ p2q1) (m/4) +(ps) (p192 + p2q1) (m/5) + (p3) (m/3) (p1qs + psq1 + p2q2)

+(p4) (m/4) (p1q5 + p3q1 + P2q2) +(ps) (m/5) (piqs + p3qi + (ps) (M/4) (psq; + p3q>

+ p2gs) + (ps) (M/5) (paq1 + p3qz + p2qs)(ps) (m/5) (psqi + psq2 + p3qs) + /4.

EV**(c/2) = p,(p:ig1) (m) + (p2) (P1q1) (2/3 m) + (p3) (piq1) (m/2)

+ (ps) (P191) (2/5 m) + (ps)(p1q1) (m/3) +(p1) (P1qz + paqi) (m)

+(p2) (P1g2 + P2q1) (2/3 m) +(p3) (P1q2 + p2q91) (m/2) +(p4) (P1G2 + P2q.1) (2/5 m)
+(ps) (P12 + P2q1) (m/3) + (p2) (2/3 m) (p1qs + psq; + P2q2)

+ (p3) (m/2) (p1qs + p3q1 + P2q2) +(p4) (2/5 m) (p1qs5 + p3qi + p2q>)

+(ps) (m/3) (p1qs + psq1 + ps) (M/2) (psq; + P32 + p2qs) + (p4) (2/5 m) (paqs + P3q2
+ p2qs) + (ps) (m/3) (paqi + psqz + P2q3)(ps) (2/5 m) (psq1 + paqz + Psqs)

+ (ps) (m/3) (psq1 + paqz + P3gs) + (p4) (m/3) (pags + psqz)

EV™™(0)= ¢

EV™(c/4) = q, (p1q1) (m) + (q2) (p1q1) (m/2) + (q5) (p1q.) (m/3)
+(q2) (P1q2 + p2q1) (M/2) +(q3) (192 + p2q1) (M/3)
+(q3) (m/3) (p1q3 + p3q; + p2q2) + 3 c/4.

EV'"™(c/2) = q; (p1q1) (m) + (42) (p1q1) (2/3 m) + (q5) (P1q1) (m/2)

+(q1) (P1q2 + p2q.) (M) + (q2) (P192 + p2q1) (2/3 m) +(q5) (P1q2 + P2q.) (M/2)
+ (q2) (2/3 m) (p1gs + p3q1 + p2q2) + (q3) (M/2) (p1q3 + p3q1 + p2q2)

+(q3) (M/2) (paq1 + psqz + p2qs) + /2.

EV"™(3c/4) = q (p1q1) (m) + (q2) (p1q1) (3/4 m) + (q3) (p1q.) (3/5 m)

+(q1) (P192 + P2q1) (m) + (q2) (P12 + p2q.1) (3/4 m) +(q3) (p1q2 + p2q1) (3/5 m)
+(q1) (m) (p1g3 + p3q1 + p2q2) + (q2) (3/4 m) (p1qs + p3q; + p2q2)

+(q3) (3/5m) (piqs + psq1 + p2q2)

+(q2) (3/4 m) (paq1 + P3qz + p2q3) + (q3) (3/5 m) (psq; + P3q2 + p2q3)

+(q3) (3/5 m) (psq1 + p«q2 + p3q;) + c/4.
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EV"™(c) = qi(p:iqi) (m) +(q2) (p1q1) (4/5 m) + (q3) (p.q1) (4/6 m)

+(q1) (P1g2 + p2q1) (m) + (q2) (P12 + P2q1) (4/5 m) +(q3) (P1q2 + P2q,) (4/6 m)
+(q1) (m) (p1q; + p3q1 + P2q2) + (q2) (4/5 m) (pigs5 + p3q1 + P2q2)

+(q3) (4/6 m) (p1qs + p3q1 + P2q2) + (41) (m) (paq; + P3q2 + P2q3)

+(q2) (4/5m) (paq1 + P3q2 + p2qs) + (q3) (4/6 m) (p4q; + P39z + p2q3)

+(q2) (4/5 m) (psqi + p4qz + p3q3) + (q3) (4/6 m) (psq; + psqz + psqs)

+(q3) (4/6 m) (p4q; + psq2).

The following system of system of 8 equations provides the equilibrium solution (namely, p;, pa, p;, ps

Ps 41, g2 and g3):

EV**(c/4) - EV*“(0) = 0,
EV***(c/2) - EV**(c/4) = 0,
EV*"*"%(c/4) - EV""™(0) = 0,
EV"™(c/2) - EVS"*"%(c/4) = 0,
EV""8(3c/4) - EV'""¥(c/2) = 0,
EV""8(c) - EV'"™"%(3c/4) = 0,
g+ g2+ g3 = 1,
pirtp2+ps+pstps=1

Section 1.18

In this section we derive the equilibrium solution for the competition between two same-function
alliances where each player can invest 0, ¢/4, ¢/2, 3c/4, or c units of capital.

We denote the probability of investing 0, c/4, c/2, 3c/4, or c units of capital by p,, p,, p;, ps and

ps, respectively. In the table below we present the joint probabilities.
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Table 8: Same-function Alliance (Asymmetric Players within an alliance)

Joint Probabilities (All players except i, in alliance i)

uG)
0 c/4 c/2 3c/4 c 1Yc 1%c 13%¢ 2c¢
0 Pi P, Di , P pi , Pi pi , pi Pi
(pi?) | Cpip2) | (P2 (2pi1ps | (P3 (2p2ps | (P4 (2 psps) | (ps°)
+ + + + +
2pips) | 2p2ps) | 2PiPs | 2pspa) | 2psps)
+
2pip2)
c/4 P2 P, P2 P2 P2 p2 Pz, P2 P2
(pi?) | (2pip2) | (P2 (2pips | (ps (2 paps | (p4 2 peps) | (p52)
+ + + + +
2pip3) | 2p2ps) | 2PiPs | 2psps) | 2psps)
+
2 P/.Dz)
c/2 Ps3 P; D3 , Ps3 Ps3 , Ps3 D3 , D3 D3
Player (rl) | 2pip2) | (P2 (2pi1ps | (ps (2p2ps | (P4 (2 paps) | (ps’)
+ + + + +
ir’s 2pips) | 2paps) | 2PiPs | 2psps) | 2psps)
+
Investment 2pip)
3c/4 P4 Py P4 , P4 P4 , P4 P4 5 P4 P4
(pi’) | 2p1p2) | (P 2 pips | (ps (2p2ps | (pa (2 psps) | (ps’)
+ + + + +
2pips) | 2p2ps) | 2PiPs | 2psps) | 2 psps)
+
2pips)
c Ps Ps Ps Ps Ps Ps Ps., Ps Ps
() | (2pips) | (P2 (2pips | (ps (2 p2ps | (ps (2 paps) | (ps°)
+ + + + +
2pips) | 2p2ps) | 2PiPs | 2psps) | 2 psps)
+
. ; s ;
Marginal | (p)%) | (2p,p2) | (P2 (2pips | (p3 (2 p2ps | (pa (2 psps) | (ps°)
+ + + + +
2pip3) | 2p2ps) | 2PiPs | 2psps) | 2psps)
+
2 Plpz)

Using these joint probabilities, we next compute the expected value of contributing 0, ¢/4, ¢/2, 3c¢/4, or ¢
by the player i; in alliance i. We denote these expected values by EV(0), EV(c/4), and EV(c/2), EV(3c/4),
EV(c), respectively.

EV(0) = (1- p)) (p/*) (m/2) + (1- p; = p2) (2 p1p2) (M/2)
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+ (1-py—=p2—ps) (p + 2pips) (M/2) +(1-p;— ps— p3—pa) (2 p1pa+ 2 p2ps) (M/2) +c.

EV(c/4) = (p/) (m/2) + (1- p1) (2 p1p2) (m/2)+ (1- p;— p2) (ps’ + 2 pip3) (m/2)
+ (1-pi—p2—p3) (2pips+ 2 p2ps) (M/2)
+ (1-p/—pa—ps—ps) (pS° + 2 p1ps+ 2 p1p2) (M/2)+ 3c/4.

EV(c/2) = (p)%) (m/2)+ (2 pipz) (m/2) + (1- p)) (p2" + 2 pips3) (M/2)
+ (1-pi—p2) (2pips+ 2 paps) (M/2)+ (1-p;—p2—ps) (sz +2p1ps
+2p1pa) (M/2) + (1- p1—pa—ps—pa) (2 paps+ 2 psps) (M/2)+ /2.

EV(3c/4) = (p/°) (m/2)+ (2 p1p2) (m/2)+ (pi° + 2 p1p3) (m/2)
+(1-p;) (2 p1ps+ 2 p2p3) (M/2) + (1- p; = p2) (ps* +2pips+ 2pip2) (M/2)
+ (1 p1 = p2—p3) (2 paps+ 2 p3pa) (M/2)+ (1- py— pr— ps — pag) (pd° + 2 psps) (m/2)+ c/4.

EV(c) = (P12) (m/2)+ (2 p;p2) (M/2)+ (Pzz +2p1p3) (m/2)+ (2 pps+ 2 paps) (m/2)
+ (1-p1) (ps* + 2 pips+ 2 p1pa) (m/2)+ (1- p; = p2) (2 paps+ 2 pspa) (m/2)
+ p1—p2—p3) (pd + 2 psps) (M/2)+(1- p; — p2 — ps = pa) (2 paps) (M/2).

The following system of system of five equations provides the equilibrium solution (namely, p;, p2 ps

p+ and ps):

EV(c/4) - EV(0) = 0,
EV(c/2) - EV(c/4) = 0,
EV(3c/4) - EV(c/2) = 0,
EV(c) - EV(3c/4) = 0,
pit p2+ps+ps+ps=1.
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Appendix 2: Instructions for Subjects and Figures on Empirical Distribution

Section 2.1a: Same-Function Alliance with equal profit-sharing arrangement

You will participate today in a decision making experiment concerning competition between two
alliances (groups of firms). Each alliance is comprised of two partners.

We are interested in studying how two alliances compete with each other in the development of a
new product. We are simulating this common situation in the laboratory. You will represent a firm,
which is a member of one of the competing alliances. Three other subjects will represent the other three
firms (the other member of your alliance and the two firms in the competing alliance).

The experiment involves many trials, and all of them have the same structure. At the beginning
of each trial, you will be provided with some investment capital and then asked how much of it you wish
to invest in the new product development project. The other three firms (the other member of your
alliance and the two firms in the competing alliance) will also be provided the same amount of
investment capital and asked to make similar investment decisions

The rules of this investment game are simple. The capital invested by each firm in the
development of the new product is non-recoverable. Therefore once invested the money is lost
irrespective of the outcome of the competition. The alliance that invests more capital in the product
development research will succeed in developing the new product, and each member of the winning
alliance will receive a fixed reward. The reward does not depend on the relative investments made by
each member of the winning alliance, so both the members of the alliance will receive the same fixed
reward. The fixed reward represents profit that each member of the successful alliance earns from
marketing the new product. Each member of the losing alliance receives nothing.

Experimental Procedure: As discussed above, there are 2 groups of firms (alliances), and each

group is comprised of two players (members). At the beginning of each trial each player will be given
some investment capital. All the players will receive the same investment capital and it remains
unchanged from trial to trial. The investment capital will be stated in terms of a fictitious currency called
“francs”, and at the end of the experiment your earnings will be converted to US dollars.

Once each player is allotted (endowed) some investment capital, he/she must decide how much
to invest in his/her group’s new product development research. You may invest any number of francs
(including zero), provided your investment does not exceed your endowment (investment capital allotted
for the trial). After all the four players have made their investment decisions, privately and anonymously,
the computer will compare the total investments made by the two groups of players. Members of the

group that invests the larger amount will succeed in developing the new technology product, and they
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will receive a reward of known size (in francs). Members of the losing group will receive nothing. In this
game ties will be counted as loses, as no alliance can be considered a winner. In other words, if the
investments made by both groups are equal, then no reward will be given to any of the four players.
As you can see from the game description, the individual payoffs for a trial are computed as
follows:
Payoff to a member of the winning group = endowment for the trial - investment made by
the firm in the trial + reward
Payoff to a member of the losing group = endowment for the trial - investment made by
the firm in the trial
At the end of each trial the computer will display the following information:
1) The total investments made by the winning and the losing groups
2) The group winning the competition,
3) Your payoff for the trial.

It is important to note that only you know your investment decisions, and you are taking these decisions

under complete anonymity. Group membership will vary from trial to trial. On each trial you will be

paired with a different person in this room, and both of you will compete as a group against another new

group of two players.

We are providing below an example to help you understand how your payoff is computed at the
end of each trial.

Example: Suppose the capital endowed to each subject at the beginning of a trial is 2 francs, and
the reward for winning the competition is 3 francs to each member of the successful group. Also suppose
that you invest 2 francs and your partner invests 1 franc in the new product development research. Let the
other group of players make a total investment of 2 francs in the development of their new product. Your
group has invested more for developing the new product, so your group wins the competition. Each
member of your group gets a reward of 3 francs.

Your payoff in this trial will be:

Your payoff = endowment - your investment + reward = 2 - 2 + 3 = 3 francs.

Your partner’s payoff = endowment - your partner’s investment + reward

=2-1+3 =4 francs.

Now imagine that the other group of players, who are competing against your group, invest 3
francs as well. In this case there is a tie and the reward will not be awarded to members of either groups.

Your payoff in case of a tie will be as follows:
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Your payoff = endowment - your investment + reward =2 - 2 + 0 = O francs.

Your partner’s payoff = endowment - your partner’s investment + reward

=2-1+0=1 francs.

This concludes the description of the decision task ahead of you. Paper and pencil are placed
beside the computer terminal so that you may record the investments made by your group and the other
group. At the end of the experiment, your accumulated payoff will be converted to US dollars at the
conversion rate of 100 francs = 3 dollars. You will be asked to sign a receipt for the money, and complete
a brief questionnaire before leaving the lab. We are required to retain some biographical information
about you, as we are paying you for participating in this experiment. However, during the course of this
experiment you will remain anonymous. If you have any questions, please raise your hand and the
supervisor will assist you.

After all the participants have understood the instructions, we will start the computerized
experiment. In order to help you become familiar with the decision task, you will go through five practice

trials.

Section 2.1b: Same-function alliance with proportional profit sharing

You will participate today in a decision making experiment concerning competition between two
alliances (groups of firms). Each alliance is comprised of two partners.

We are interested in studying how two alliances compete with each other in the development of a
new product. We are simulating this common situation in the laboratory. You will represent a firm,
which is a member of one of the competing alliances. Three other subjects will represent the other three
firms (the other member of your alliance and the two firms in the competing alliance).

The experiment involves many trials, and all of them have the same structure. At the beginning
of each trial, you will be provided with some investment capital and then asked how much of it you wish
to invest in the new product development project. The other three firms (the other member of your
alliance and the two firms in the competing alliance) will also be provided the same amount of
investment capital and asked to make similar investment decisions

The rules of this investment game are simple. The capital invested by each firm in the
development of the new product is non-recoverable. Therefore, once invested the money is lost
irrespective of the outcome of the competition. The alliance that invests more capital in the product
development research will succeed in developing the new product, and the winning alliance will receive a

fixed reward. The fixed reward represents the profit that the successful alliance earns from marketing the
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new product. The members of the winning alliance will share the reward in proportion to their
investments in the development of the new product. So the member of the winning alliance who invests
more will get a larger share of the fixed reward. Each member of the losing alliance receives nothing.

Experimental Procedure: As discussed above, there are 2 groups of firms (alliances), and each

group is comprised of two players (members). At the beginning of each trial each player will be given
some investment capital. All the players will receive the same investment capital and it remains
unchanged from trial to trial. The investment capital will be stated in terms of a fictitious currency called
“francs”, and at the end of the experiment your earnings will be converted to US dollars.

Once each player is allotted (endowed) some investment capital, he/she must decide how much
to invest in his/her group’s new product development research. You may invest any number of francs
(including zero), provided your investment does not exceed your endowment (investment capital allotted
for the trial). After all the four players have made their investment decisions, privately and anonymously,
the computer will compare the total investments made by the two groups of players. The group that
invests the larger amount will succeed in developing the new technology product, and it will receive a
reward of known size (in francs). The members of the winning group will share the reward in proportion
to their relative investments. The losing group will receive nothing. In the case of ties, both groups will
receive nothing.

As you can see from the game description, the individual payoffs for a trial are computed as

follows:
Payoff to a member of the winning group = endowment for the trial
- investment made by the firm in the trial
+ reward (investment made by the firm in the trial / total
investment of the winning alliance)
Payoff to a member of the losing group = endowment for the trial

- investment made by the firm in the trial
At the end of each trial the computer will display the following information:
1) The total investments made by the winning and the losing groups
2) The group winning the competition,
3) Your payoff for the trial.

It is important to note that only you know your investment decisions, and you are taking these decisions

under complete anonymity. Group membership will vary from trial to trial. On each trial you will be

46



paired with a different person in this room, and both of you will compete as a group against another new

group of two players.

We are providing below an example to help you understand how your payoff is computed at the
end of each trial.

Example: Suppose the capital endowed to each subject at the beginning of a trial is 2 francs, and
the reward for winning the competition is 6 francs. Also now suppose that you invest 2 francs and your
partner invests 1 franc in the new product development research. Let the other group of players make a
total investment of 2 francs in the development of their new product. Your group has invested more for
developing the new product, so your group wins the competition and your group gets the reward of 6
francs. The payoff for the members of your group in this trial is as follows:

Your payoff = your endowment for the trial
- your investment in the trial
+ reward (your investment / total investment of your alliance)
=2-2+6(2/3)
= 4 francs.
Your partner’s payoff = your partner’s endowment for the trial
- your partner’s investment in the trial
+ reward (your partner’s investment / total investment of your alliance)
=2-1+6(1/3)
= 3 francs.
Now imagine that the other group of players, who are competing against your group, invest 3 francs as

well. In this case there is a tie and both the groups do not get any reward. The payoff in the case of a tie

will be as follows:

Your payoff = your endowment - your investment + reward = 2 - 2 + 0 = 0 francs.

Your partner’s payoff = your partner’s endowment - your partner’s investment +

reward
=2-1+0=1 francs.

This concludes the description of the decision task ahead of you. Paper and pencil are placed
beside the computer terminal so that you may record the investments made by your group and the other
group. At the end of the experiment, your accumulated payoff will be converted to US dollars at the
conversion rate of 100 francs = 3 dollars. You will be asked to sign a receipt for the money, and complete

a brief questionnaire before leaving the lab. We are required to retain some biographical information
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about you, as we are paying you for participating in this experiment. However, during the course of this
experiment you will remain anonymous. If you have any questions, please raise your hand and the
supervisor will assist you.

After all the participants have understood the instructions, we will start the computerized
experiment. In order to help you become familiar with the decision task, you will go through five practice
trials.

Section 2.1c: Parallel development of new products with equal profit-sharing arrangement

You will participate today in a decision making experiment concerning competition between two
alliances (groups of firms). Each alliance is comprised of two partners.

We are interested in studying how two alliances compete with each other in the development of a
new product. We are simulating this common situation in the laboratory. You will represent a firm,
which is a member of one of the competing alliances. Three other subjects will represent the other three
firms (the other member of your alliance and the two firms in the competing alliance).

The experiment involves many trials, and all of them have the same structure. At the beginning
of each trial, you will be provided with some investment capital and then asked how much of it you wish
to invest in the new product development project. The other three firms (the other member of your
alliance and the two firms in the competing alliance) will also be provided the same amount of
investment capital and asked to make similar investment decisions

The rules of this investment game are simple. The capital invested by each firm in the
development of the new product is non-recoverable. Therefore once invested the money is lost
irrespective of the outcome of the competition. The utility (value) of the new product developed by an
alliance depends on the maximum investment made by a partner in the alliance. For example, if the
partners A and B in an alliance invest 2 and 1 units of resources respectively for developing the new
product then the utility of the new product so developed will be 2 utils. The alliance offering the better
product will win the competition, and each member of the winning alliance will receive a fixed reward.
The reward does not depend on the relative investments made by each member of the winning alliance,
so both the members of the alliance will receive the same fixed reward. The fixed reward represents
profit that each member of the successful alliance earns from marketing the new product. Each member
of the losing alliance receives nothing.

Experimental Procedure: As discussed above, there are 2 groups of firms (alliances), and each

group is comprised of two players (members). At the beginning of each trial each player will be given

some investment capital. All the players will receive the same investment capital and it remains
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unchanged from trial to trial. The investment capital will be stated in terms of a fictitious currency called
“francs”, and at the end of the experiment your earnings will be converted to US dollars.

Once each player is allotted (endowed) some investment capital, he/she must decide how much
to invest in his/her group’s new product development research. You may invest any number of francs
(including zero), provided your investment does not exceed your endowment (investment capital allotted
for the trial). After all the four players have made their investment decisions, privately and anonymously,
the computer will compute the value of the new product developed by each of the two competing
alliances. The utility (value) of the new product developed by an alliance depends on the maximum
investment made by a partner in the alliance. The alliance offering a better product will win the
competition. Members of the winning alliance will receive a reward of known size (in francs). Members
of the losing group will receive nothing. In this game ties will be counted as loses, as no alliance can be
considered a winner. In other words, if the maximum investments made by both groups are equal, then no
reward will be given to any of the four players.

As you can see from the game description, the individual payoffs for a trial are computed as
follows:

Payoff to a member of the winning group = endowment for the trial - investment made by
the firm in the trial + reward

Payoff to a member of the losing group = endowment for the trial - investment made by
the firm in the trial

At the end of each trial the computer will display the following information:

1) The total investments made by the winning and the losing groups

2) The group winning the competition,

3) Your payoff for the trial.

It is important to note that only you know your investment decisions , and you are taking these decisions

under complete anonymity. Group membership will vary from trial to trial. On each trial you will be

paired with a different person in this room, and both of you will compete as a group against another new

group of two players.

We are providing below an example to help you understand how your payoff is computed at the
end of each trial.

Example: Suppose the capital endowed to each subject at the beginning of a trial is 2 francs, and
the reward for winning the competition is 3 francs to each member of the successful group. Also suppose

that you invest 2 francs and your partner invests 1 franc in the new product development research. The
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maximum investment made by your group is 2 francs, and the value of the new product developed by
your group is 2 utils. Let each player in the competing alliance make an investment of 1 franc each. The
competing alliance has made a maximum investment of 1 franc, and the value of the new product
developed by the competing alliance is 1 util. So your group has developed a better and it wins the
competition. Each member of your group gets a reward of 3 francs each.
Your payoff in this trial will be:

Your payoff = endowment - your investment + reward = 2 - 2 + 3 = 3 francs.

Your partner’s payoff = endowment - your partner’s investment + reward

=2-1+3=4francs

Now imagine that the two players in the competing alliance invest 2 francs each. So the value of
the new product so developed by the competing alliance is 2 utils. In this case there is a tie and the
reward will not be awarded to members of either groups. Your payoff in case of a tie will be as follows:

Your payoff = endowment - your investment + reward = 2 - 2 + 0 = 0 francs.

Your partner’s payoff = endowment - your partner’s investment + reward

=2-1+0=1 franc.

This concludes the description of the decision task ahead of you. Paper and pencil are placed
beside the computer terminal so that you may record the investments made by your group and the other
group. At the end of the experiment, your accumulated payoff will be converted to US dollars at the
conversion rate of 100 francs = 3 dollars. You will be asked to sign a receipt for the money, and complete
a brief questionnaire before leaving the lab. We are required to retain some biographical information
about you, as we are paying you for participating in this experiment. However, during the course of this
experiment you will remain anonymous. If you have any questions, please raise your hand and the
supervisor will assist you.

After all the participants have understood the instructions, we will start the computerized
experiment. In order to help you become familiar with the decision task, you will go through five practice
trials.

Section 2.2 Trends in the aggregate investment pattern of subjects is presented in the following pages.
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Appendix 2.2A: Same-Function Alliance

Empirical Distribution of Strategies
(Equal profit sharing, high reward condition)
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Appendix 2.2B: Same-Function Alliance
Empirical Distribution of Strategies
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Empirical Distribution of Strategies
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Note: The empirical distribution was computed across subjects in blocks of 10 trials
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Probabilities

Appendix 2.2D: Same-Function Alliance
Empirical Distribution of Strategies
(Proportional profit sharing, high reward condition)
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Appendix 2.2E: Same-Function Alliance

Empirical Distribution of Strategies
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Appendix 2.2G: Parallel Development
Empirical Distribution of Strategies
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