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1 Introduction

In the last twenty years or so, issues related to the detection and estimation of structural

change in time series models have received a great deal of attention in both the statistics

and econometrics literature (See Perron, 2006, for a survey). During this period, substantial

advances have been made to cover models at a level of generality that allows a host of

interesting empirical applications. These include models with general stationary regressors,

models with trending variables and possible unit roots, cointegrated models and long memory

processes, among others. Starting with the work of Perron (1989), a large literature has also

addressed the interplay between structural changes and unit roots, in particular the fact that

both classes of processes share similar qualitative features. For instance, it is now common

econometric practice to test for the presence of unit roots while allowing for structural

changes in the trend function of the underlying time series. The reason is that failure to

account for such changes can bias unit root tests in favor of the unit root model when the true

process is subject to structural changes but is otherwise (trend) stationary within regimes

specified by the break dates.

The literature on testing for a change in the persistence of a time series is less extensive

and, in fact, relatively recent. If such a change preserves the stationarity properties of the

series in the respective regimes, methods developed in the context of stationary data can still

be applied (see Andrews, 1993 and Bai and Perron, 1998). In many cases, however, a process

may switch from one with an autoregressive unit root [I(1)] to a stationary one [I(0)] or vice-

versa. This has been an issue of substantial empirical interest, especially concerning inflation

rate series (e.g., Barsky, 1987, Burdekin and Siklos, 1999), short-term interest rates (e.g.,

Mankiw et al., 1987), government budget deficits (e.g., Hakkio and Rush, 1991) and real

output (e.g., Delong and Summers, 1988). Taylor (2005) shows that standard unit root tests

are not consistent against processes which display a shift in behavior from stationarity to

non-stationarity and vice-versa. Hence separate methods are needed which can consistently

distinguish between a process with stable persistence from processes that undergo a shift in

persistence over the period under consideration.

Kim (2000), Busetti and Taylor (2004) and Harvey et al. (2006) consider testing the

null hypothesis that the series is I(0) throughout the sample versus the alternative that it

switches from I(0) to I(1) and vice-versa. The tests are based on partial sums of residuals

obtained by regressing the data on a constant or a constant and time trend. Leybourne et

al. (2003) consider testing the null hypothesis of a stable unit root process versus the same
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alternatives based on the minimal value of the locally GLS detrended augmented Dickey-

Fuller (ADF ) unit root statistic developed in Elliott et al. (1996) over sub-samples of the

data. They propose different test statistics depending on whether the initial regime is I(1) or

I(0). When the direction of the change is unknown, they consider the minimal value of the

pair of statistics for each case. Kurozumi (2005) suggests an alternative testing procedure

based on the Lagrange Multiplier (LM) principle while Leybourne et al. (2006) develop tests

of the unit root null based on standardized cumulative sums of squared sub-sample residuals

that do not spuriously reject when the series is a constant I(0) process.

The above tests are designed to detect a single change in persistence and do not allow

for multiple changes. Single break tests usually have low power in detecting processes which

display multiple shifts in persistence. It is thus useful to develop tests that are valid in the

presence of multiple structural changes. In a recent paper, Leybourne et al. (2007) develop

tests of the unit root null hypothesis based on doubly-recursive sequences of ADF -type

unit root statistics and associated breakpoint estimators. Their proposed procedure can

accommodate processes that exhibit multiple changes in persistence and are valid regardless

of the direction of change(s). In particular, they demonstrate the consistency of their tests

against such alternatives and show that their procedure can be used to consistently partition

the data into its separate I(0) and I(1) regimes.

As is evident from this brief review, most tests for changes in persistence are based on

either partial sums of the (demeaned or detrended) data or on unit root statistics applied to

various data sub-samples. In contrast, this paper proposes sup-Wald tests of the null hypoth-

esis that the process is I(1) against the alternative hypothesis that the process alternates

between stationary and I(1) regimes. The tests are based on the difference between the sum

of squared residuals from the unit root model and those from a model that allows shifts in

persistence between stationary and non-stationary regimes. We consider tests for both single

and multiple changes in persistence. The limit distributions of the tests are derived under

the null and their consistency is established under the relevant alternatives. The computa-

tion of the test statistics as well as asymptotic critical values is facilitated by the dynamic

programming algorithm proposed in Perron and Qu (2006) which allows the minimization

of the sum of squared residuals under the alternative hypothesis while imposing within and

cross regime restrictions on the parameters. Finally, we present Monte Carlo evidence to

show that the proposed tests perform quite well in finite samples relative to those proposed

in Leybourne et al. (2007).

The paper is organized as follows. Section 2 presents the models and the test statistics.
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In Section 3, we discuss issues related to the computation of the statistics with reference to

the dynamic programming algorithm proposed in Perron and Qu (2006). Section 4 details

the asymptotic properties of the tests under the null and alternative hypotheses. Monte

Carlo simulations are presented in Section 5 to assess the adequacy of the asymptotic ap-

proximations in finite samples. Some recommendations for applied work are also included.

Section 6 concludes. All technical derivations are included in a mathematical appendix.

2 The Models and Test Statistics

Consider a scalar random variable yt generated by

yt = ci + αiyt−1 + ut (1)

for t ∈ [Ti−1 + 1, Ti], i = 1, ...,m + 1, where we use the convention T0 = 0 and Tm+1 = T ,

with T denoting the sample size. The vector of break fractions is denoted λ = (λ1, ..., λm)with

λi = Ti/T for i = 1, ...m. The errors {ut} are generated by the stationary linear process

ut = d(L)vt, d(L) =
∞X
s=0

dsL
s (2)

where
P∞

s=1 s |ds| < ∞. Also, αi should be understood as standing for the sum of the

coefficients in the autoregressive representation for yt in regime i. We make the following

assumption regarding the innovation process {vt}:

Assumption A1: The process {vt} is a martingale difference sequence with E(v2t |vt−1, ...) =
σ2, E(|vt|r |vt−1, ...) = κr (r = 3, 4) and supt E(|vt|4+β |vt−1, ...) = κ <∞ for some β > 0.

Without loss of generality, we assume that the initial values y0 = u0 = 0. Next, we make

the following assumption regarding the polynomial d(L):

Assumption A2: All roots of d(L) are outside the unit circle.

We consider the following two models depending on whether the initial regime contains

a unit root or not:

• Model 1a: ci = 0, αi = 1 in odd regimes and |αi| < 1 in even regimes.

• Model 1b: ci = 0, αi = 1 in even regimes and |αi| < 1 in odd regimes.
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In model 1a, the process alternates between a unit root and a stationary process with a

unit root in the first regime. Model 1b is similar except that the first regime is stationary.

To allow for the possibility of trending data, we also consider the process

yt = ci + bit+ αiyt−1 + ut

The corresponding models are

• Model 2a: αi = 1, bi = 0 in odd regimes and and |αi| < 1 in even regimes.

• Model 2b: αi = 1, bi = 0 in even regimes and |αi| < 1 in odd regimes.

We are interested in testing the null hypothesis that yt is I(1) throughout the sample.

In the context of models 1a and 1b, this implies H0: ci = 0, αi = 1 for all i. For models

2a and 2b, the null hypothesis is H0: ci = c, bi = 0, αi = 1 for all i. We first consider the

test statistics for non-trending data, i.e., those based on models 1a and 1b. Under (1) and

Assumption A2, yt evolves according to

∆yt = ci + (αi − 1)yt−1 +
∞X
j=1

πjut−j + vt

where the coefficients πj (j = 1, ...,∞) are functions of the parameters ds, s ≥ 0. Since

∆yt = ut under the null hypothesis, we have the representation

∆yt = ci + (αi − 1)yt−1 +
∞X
j=1

πj∆yt−j + vt

We can approximate this infinite autoregression by a truncated version whose order is a

function of the sample size T :

∆yt = ci + (αi − 1)yt−1 +
lTX
j=1

πj∆yt−j + v∗t (3)

where v∗t =
P∞

j=lT+1
πj∆yt−j + vt.

Note that the coefficients πj on the lagged first-differences are not allowed to change under

both the null and alternative hypotheses. Allowing them to change across regimes would

open up the possibility that the tests reject because of changes in the short-run dynamics

instead of the I(0)/I(1) nature of the process. Hence, the need to constrain them to be fixed.

We shall, however, show via simulations that the exact sizes of our tests are quite robust

4



when the process is I(1) throughout with changes in the short-run dynamics. Though this

restriction is not imposed by Leybourne et al. (2007), as we shall see the size of their test

is quite sensitive to variations in the short-run dynamics. It is important, however, to allow

the constant to change across regimes when the process is I(0). This is because a change

from an I(1) to an I(0) process is often accompanied with a change in the long-run mean

of the process due to the fact that the level of the series in an I(1) regime tends to wander

arbitrarily as opposed to what occurs in an I(0) regime for which the series tends to a stable

trend path.

We study three types of tests. First, we consider the Wald test that applies when the

alternative involves a fixed value m = k of changes. For models 1a and 1b, the test is defined

as

F1a(λ, k) =
(T − k − lT )(SSR0 − SSR1a,k)

kSSR1a,k
if k is even

F1a(λ, k) =
(T − k − 1− lT )(SSR0 − SSR1a,k)

(k + 1)SSR1a,k
if k is odd (4)

F1b(λ, k) =
(T − k − 2− lT )(SSR0 − SSR1b,k)

(k + 2)SSR1b,k
if k is even

F1b(λ, k) =
(T − k − 1− lT )(SSR0 − SSR1b,k)

(k + 1)SSR1b,k
if k is odd (5)

In (4) and (5), SSR0 denotes the sum of squared residuals under the null hypothesis, i.e.

the sum of squared residuals obtained estimating (3) by OLS subject to the restrictions

ci = 0, αi = 1 for all i. The quantity SSRk,1a denotes the sum of squared residuals obtained

from estimating (3) under the restrictions imposed by Model 1a. Similarly, SSRk,1b denotes

the sum of squared residuals obtained from estimating (3) under the restrictions imposed

by Model 1b. Next, we define the following set for some arbitrary small positive number

�: Λk
� = {λ : |λi+1 − λi| ≥ �, λ 1 ≥ �, λ k ≤ 1 − �}. The sup-Wald tests are then defined as

sup F1a(k) = supλ∈Λk� F1a(λ, k) and sup F1b(k) = supλ∈Λk� F1b(λ, k). Since the estimates
eλ =

{eλ1, ..., eλk} with eλi = eTi/T (for i = 1, ..., k) obtained by minimizing the global sum of squared
residuals correspond to those that maximize the Wald test, we have sup F1a(k) = F1a(eλ, k)
and sup F1b(k) = F1b(eλ, k). Note that to ensure that the Wald tests are non-negative in
finite samples, the same number of lags of first differences of the dependent variable must

be used when estimating the models under the null and alternative hypotheses.

The second procedure applies when the alternative hypothesis involves an unknown num-

ber of changes between 1 and some upper bound, say A. As in Bai and Perron (1998), we
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consider a double maximum test based on the maximum of the individual tests for the null

of no break versus m breaks (m = 1, ..., A), defined by

UDmax1a(A) = max
1≤m≤A

sup
λ∈Λm�

F1a(λ,m),

UDmax1b(A) = max
1≤m≤A

sup
λ∈Λm�

F1b(λ,m).

This test is useful when the number of breaks is unknown. The third type of tests is based

on the presumption that the nature of persistence in the first regime is unknown, i.e., we do

not have any a priori knowledge regarding whether the first regime contains a unit root or

not. The tests are given by

W1(k) = max[supF1a(λ, k), supF1b(λ, k)]

Wmax1 = max
1≤m≤A

W1(m)

For models 2a and 2b, regression (3) is replaced by

∆yt = ci + bit+ (αi − 1)yt−1 +
lTX
j=1

πj∆yt−j + v∗t (6)

The Wald tests are defined as

F2a(λ, k) =
(T − 2k − 1− lT )(SSR

∗
0 − SSR2a,k)

(2k)SSR2a,k
if k is even

F2a(λ, k) =
(T − 2k − 2− lT )(SSR

∗
0 − SSR2a,k)

(2k + 1)SSR2a,k
if k is odd (7)

F2b(λ, k) =
(T − 2k − 3− lT )(SSR

∗
0 − SSR2b,k)

(2k + 2)SSR2b,k
if k is even

F2b(λ, k) =
(T − 2k − 2− lT )(SSR

∗
0 − SSR2b,k)

(2k + 1)SSR2b,k
if k is odd (8)

In (7) and (8), SSR∗0 denotes the sum of squared residuals under the null hypothe-

sis, i.e. the sum of squared residuals obtained estimating (6) subject to the restrictions

ci = c, bi = 0, αi = 1 for all i. Given these tests, the remaining statistics are de-

fined in the same way as for models 1a and 1b. These are denoted sup F2a(k), sup

F2b(k), UDmax2a(A), UDmax2b(A), W2(k) and Wmax2.
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3 Computing the Test Statistics

In order to compute the sup-Wald test for any particular model, we need to minimize the

global sum of squared residuals over the set of permissible break fractions Λk
� subject to

the restrictions implied by the model. Note that there are two types of restrictions: one

is model-specific which involves imposing unit roots within the relevant regimes while the

other ensures that the coefficients of the lagged first differences do not change across regimes.

Note that our procedure does not impose the stationarity restrictions (|αi| < 1). While it

may be desirable to impose these restrictions, it will make little difference in practice given

that explosive alternatives with |αi| > 1 are unlikely to arise in practice.
Bai and Perron (2003) describe an efficient estimation procedure based on a dynamic

programming algorithm which involves at most least-squares operations of order O(T 2) for

any number of breaks. However, their procedure is not directly applicable in our context

since it is does not account for parametric restrictions within and across regimes. Building on

the work of Bai and Perron (2003), Perron and Qu (2006) develop a recursive procedure that

allows the minimization of sum of squared residuals in general multiple structural change

models subject to restrictions. We first describe their framework and subsequently discuss

how the models considered in this paper can be expressed as special cases.

Perron and Qu (2006) consider a multiple linear regression model with k breaks or k +

1 regimes. Let y = (y1, ..., yT )
0 be the dependent variable and Z = (z1, ..., zT )

0 be a T by

q matrix of regressors. Define Z̄ = diag(Z1, ..., Zk+1), a T by (k + 1)q matrix with Zi =

(zTi−1+1, ..., zTi)
0 for i = 1, ..., k+1. The matrix Z̄ is the diagonal partition of Z at the set of

break points (T1, ..., Tk). The (k+1)q vector of coefficients is δ = (δ
0
1, ..., δ

0
k+1)

0. The general

pure structural change model with restrictions on the coefficients can be expressed as

y = Z̄δ + u (9)

where

Rδ = r (10)

with R a s by (k + 1)q matrix with rank s and r a s dimensional vector of constants. The

estimated break dates are obtained as (eT1, ..., eTk) = argminT1,...,Tk SSR
R(T1, ..., Tk) where

SSRR(T1, ..., Tk) is the sum of squared residuals from the restricted OLS regression evaluated

at the partition {T1, ..., Tk}. Details on the recursive procedure can be found in Section 5.2
of Perron and Qu (2006).

The models described in Section 2 can be obtained as special cases of the framework

represented by (9) and (10). For all models, r is a zero vector of dimension given by the
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number of restrictions. We illustrate the form of the R matrix for models 1a and 2a. First,

consider model 1a. We have zt = (1, yt−1,∆yt−1, ...,∆yt−lT )
0, δi = (ci, αi − 1, π1i, ..., πji)0.

With k even, R is a [k+2+ klT ] by [(lT +2)(k+1)] matrix where the first k+2 restrictions

are implied by the unit roots imposed in the (k/2+1) odd regimes and the last klT restrictions

are implied by the fact that the coefficients π1, ..., πlT are fixed across regimes. For instance,

with k = lT = 2, R is the 8 by 12 matrix

R =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 1 0 0 0 −1 0 0 0 0 0

0 0 0 1 0 0 0 −1 0 0 0 0

0 0 0 0 0 0 1 0 0 0 −1 0

0 0 0 0 0 0 0 1 0 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Similarly, when k is odd, R is a [k + 1 + klT ] by [(lT + 2)(k + 1)] matrix where the first

k + 1 restrictions are implied by the unit roots imposed in the (k + 1)/2 even regimes and

the last klT restrictions again follow from the constancy of the coefficients of the lagged first

differences of the dependent variable.

For model 2a, we have zt = (1, yt−1, t,∆yt−1, ...,∆yt−lT )
0, δi = (ci, bi, αi − 1, π1i, ..., πji)0.

Here the zero restrictions on the intercept are replaced by zero restrictions on the trend

coefficients. With k even, R is a [k + 2 + klT ] by [(lT + 3)(k + 1)] matrix and with k odd,

R is a [k+1+ klT ] by [(lT +3)(k+1)] matrix. For instance, with k = lT = 2, R is the 8 by

15 matrix

R =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0 −1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
8



We can similarly express the restrictions implied by the other models in terms of the gen-

eral model considered in Perron and Qu (2006). We can thus directly apply their algorithm

to minimize the sum of squared residuals subject to the relevant restrictions.

4 Asymptotic Results

This section details the limiting properties of the proposed statistics under the null and alter-

native hypotheses. Specifically, in subsection 4.1, we present the asymptotic distributions of

the tests under the null hypothesis that the process is I(1) throughout the sample. The com-

putation of asymptotic critical values is discussed in subsection 4.2. Finally, in subsection

4.3, we demonstrate the consistency of the tests under the relevant alternative hypotheses.

4.1 The Null Limiting Distributions

LetW (.) denote a standard Brownianmotion on [0, 1]. Also, letW (j)(r) andfW (j)(r) represent

demeaned and detrended Brownian motions respectively, over r ∈ (λj−1, λj) (the appendix
contains expressions for these in terms of the standard Wiener process W (.)). The following

theorem states the limit distributions of the tests under the null hypothesis of a unit root.

We start with the case where there is no serial correlation, i.e., ut = vt and subsequently

show that all limit results are valid for the general case.

Theorem 1 Assume that ut = vt where vt satisfies Assumption A2. Suppose also that the

test statistics are constructed based on autoregressions that do not include the lags of first

differences of yt. Then under the null hypothesis H0: ci = 0, αi = 1 for all i, if k is even,

we have

F1a(λ, k) ⇒ 1

k

k/2P
i=1

⎡⎢⎣
nR λ2i

λ2i−1
W (2i)(r)dW (r)

o2
R λ2i
λ2i−1

[W (2i)(r)]2dr
+

1

λ2i − λ2i−1
{W (λ2i)−W (λ2i−1)}2

⎤⎥⎦
F1b(λ, k) ⇒ 1

k + 2

k/2P
i=0

⎡⎢⎣
nR λ2i+1

λ2i
W (2i+1)(r)dW (r)

o2
R λ2i+1
λ2i

[W (2i+1)(r)]2dr
+

1

λ2i+1 − λ2i
{W (λ2i+1)−W (λ2i)}2

⎤⎥⎦
If k is odd,

F1a(λ, k)⇒ 1

k + 1

(k+1)/2P
i=1

⎡⎢⎣
nR λ2i

λ2i−1
W (2i)(r)dW (r)

o2
R λ2i
λ2i−1

[W (2i)(r)]2dr
+

1

λ2i − λ2i−1
{W (λ2i)−W (λ2i−1)}2

⎤⎥⎦
9



F1b(λ, k)⇒ 1

k + 1

(k−1)/2P
i=0

⎡⎢⎣
nR λ2i+1

λ2i
W (2i+1)(r)dW (r)

o2
R λ2i+1
λ2i

[W (2i+1)(r)]2dr
+

1

λ2i+1 − λ2i

©
W (λ2i+1)−W (λ2i)

ª2⎤⎥⎦
Under the null hypothesis H0: ci = c, bi = 0, αi = 1 for all i, if k is even, we have

F2a(λ, k) ⇒ 1

2k

⎡⎢⎢⎢⎢⎢⎢⎣
−{W (1)}2 +Pk/2

i=0

h
1

λ2i+1−λ2i {W (λ2i+1)−W (λ2i)}2
i

+
k/2P
i=1

⎡⎢⎢⎢⎣
λ2i
λ2i−1 W

(2i)(r)dW (r)
2

λ2i
λ2i−1 [W

(2i)(r)]2dr
+ 1

λ2i−λ2i−1 {W (λ2i)−W (λ2i−1)}2

+
λ2i
λ2i−1{r−(λ2i−λ2i−1)

−1 λ2i
λ2i−1 rdr}dW (r)

2

λ2i
λ2i−1{r−(λ2i−λ2i−1)

−1 λ2i
λ2i−1 rdr}

2dr

⎤⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎦

F2b(λ, k) ⇒ (2k + 2)−1

⎡⎢⎢⎢⎢⎢⎢⎣
−W (1)2 +Pk/2

i=1

h
1

λ2i−λ2i−1 {W (λ2i)−W (λ2i−1)}2
i

+
k/2P
i=0

⎡⎢⎢⎢⎣
λ2i+1
λ2i

W (2i+1)(r)dW (r)
2

λ2i+1
λ2i

[W (2i+1)(r)]2dr
+ 1

λ2i+1−λ2i {W (λ2i+1)−W (λ2i)}2

+
λ2i+1
λ2i

{r−(λ2i+1−λ2i)−1 λ2i+1
λ2i

rdr}dW (r)
2

λ2i+1
λ2i

{r−(λ2i+1−λ2i)−1 λ2i+1
λ2i

rdr}2dr

⎤⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎦
If k is odd,

F2a(λ, k) ⇒ 1

2k + 1

⎡⎢⎢⎢⎢⎢⎢⎣
−{W (1)}2 +P(k−1)/2

i=0

h
1

λ2i+1−λ2i {W (λ2i+1)−W (λ2i)}2
i

+
(k+1)/2P
i=1

⎡⎢⎢⎢⎣
λ2i
λ2i−1 W

(2i)(r)dW (r)
2

λ2i
λ2i−1 [W

(2i)(r)]2dr
+ 1

λ2i−λ2i−1 {W (λ2i)−W (λ2i−1)}2

+
λ2i
λ2i−1{r−(λ2i−λ2i−1)

−1 λ2i
λ2i−1 rdr}dW (r)

2

λ2i
λ2i−1{r−(λ2i−λ2i−1)

−1 λ2i
λ2i−1 rdr}

2dr

⎤⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎦

F2b(λ, k) ⇒ 1

2k + 1

⎡⎢⎢⎢⎢⎢⎢⎣
−{W (1)}2 +P(k+1)/2

i=1

h
1

λ2i−λ2i−1 {W (λ2i)−W (λ2i−1)}2
i

+
(k−1)/2P
i=1

⎡⎢⎢⎢⎣
λ2i+1
λ2i

W (2i+1)(r)dW (r)
2

λ2i+1
λ2i

[W (2i+1)(r)]2dr
+ 1

λ2i+1−λ2i {W (λ2i+1)−W (λ2i)}2

+
λ2i+1
λ2i

{r−(λ2i+1−λ2i)−1 λ2i+1
λ2i

rdr}dW (r)
2

λ2i+1
λ2i

{r−(λ2i+1−λ2i)−1 λ2i+1
λ2i

rdr}2dr

⎤⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎦
Theorem 1 shows that for all models, the limit distributions of the Wald tests based on

a given vector of break fractions (λ1, ..., λk) are pivotal and depend only on functionals of a

Wiener processes. The limit distributions are different depending on whether the alternative

hypothesis specifies that the initial regime has a unit root or is stationary. As is the case

with standard unit root tests, the limits are also different for the trending and non-trending

cases. The form of the distributions vary according to whether the number of breaks under

the alternative hypothesis is even or odd. With these theoretical results, we can obtain the
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limit distributions of the proposed tests as a direct consequence of the continuous mapping

theorem. These are stated in the following Corollary.

Corollary 1 Denote the limit distribution of the test Fj(λ, k) by F ∗j (λ, k), j = 1a, 1b, 2a, 2b.

Then, under the same null hypothesis as in Theorem 1, we have: a) supλ∈Λk� Fj(λ, k) ⇒
supλ∈Λk� F

∗
j (λ, k), b) UDmaxj(A)⇒ max1≤m≤A supλ∈Λm� F ∗j (λ,m), c) W1(k)⇒ max[supλ∈Λk�

F ∗1a(λ, k), supλ∈Λk� F
∗
1b(λ, k)], W2(k) ⇒ max[supλ∈Λk� F

∗
2a(λ, k), supλ∈Λk� F

∗
2b(λ, k)], d) Wmax1

⇒ max1≤m≤A[max[supλ∈Λm� F ∗1a(λ,m), supλ∈Λm� F ∗1b(λ,m)]], Wmax2 ⇒ max1≤m≤A[max[supλ∈Λm�
F ∗2a(λ,m), supλ∈Λm� F ∗2b(λ,m)]].

Next, we show that the results of Theorem 1 and Corollary 1 remain valid when ut follows

the general linear process specified by (2). We make the following assumption regarding the

lag length lT .

Assumption A3: As T →∞, the lag length lT is assumed to satisfy (a) (upper bound

condition) l2T/T → 0 and (b) (lower bound condition) lT
P

j>lT
πj → 0.

The implication of the lower bound condition in practice is that it allows for a logarithmic

rate of increase for lT thereby allowing for the use of data dependent rules such as information

criteria to select the lag length (see Ng and Perron, 1995). We now state the result for the

general case.

Theorem 2 Under A1-A3 hold and the null hypotheses considered in Theorem 1, the cor-

responding test statistics have the same limit distributions as those stated in Theorem 1 and

Corollary 1.

4.2 Asymptotic Critical Values

Given the non-standard nature of the limit distributions, the critical values are obtained by

Monte-Carlo simulations. Here again we use Perron and Qu’s (2006) dynamic programming

algorithm. First, we generate a sample of T = 500 observations from a random walk with

i.i.d. N(0, 1) errors. We then apply the algorithm to obtain the minimized sum of squared

residuals and the corresponding vector of break fractions subject to the relevant restrictions.

Next, we simulate a Wiener process using the partial sums of 500 i.i.d. N(0, 1) random

variables. Finally, we evaluate the expressions appearing in the limit distributions (see

Appendix) at the vector of break fractions obtained earlier. This procedure is repeated 5000

times to obtain the required quantiles of the limit distributions.

11



Asymptotic critical values are provided in Table 1 with the level of trimming set at

� = 0.15. The maximum number of breaks considered is 5. Panel A provides critical values

for the non-trending case while those for the trending case are presented in Panel B. The

critical values for models 1a and 2a are larger than those for models 1b and 2b respectively.

Note also that the critical values are not monotonically decreasing as k increases. This is

due to the fact that the limit distributions are different for the cases with k even or odd.

For even or odd values they are monotonically decreasing as expected.

4.3 Consistency

In this subsection, we study the properties of the tests under the relevant alternative hy-

potheses. In particular, we demonstrate that in the presence of regime shifts in persistence

of the form considered in this paper, the relevant tests are consistent, i.e., they reject the

null hypothesis with probability one in large samples. We make the following assumption

regarding the location of the true break fractions.

Assumption A4: The true vector of break fractions, denoted λ0 = (λ01, ..., λ
0
m), is

assumed to belong to the set of permissible break fractions, i.e., λ0 ∈ Λm
� .

This assumption is not very restrictive given that in practice, � can be chosen to be small.

We can then state the following theorem regarding the consistency of the tests under the

relevant alternative hypotheses.

Theorem 3 Suppose that the data are generated under the alternative hypothesis represented
by model j (j = 1a, 1b, 2a or 2b) with m breaks in persistence. Then under A1-A4, the tests

supλ∈Λm� Fj(λ,m) and UDmaxj(A) are consistent. Moreover, if the data are generated by

models 1a or 1b, the tests W1(m) and Wmax1 are consistent while if the data are generated

by models 2a or 2b, the tests W2(m) and Wmax2 are consistent.

5 Simulation Experiments

In this section, we conduct simulation experiments to assess the finite sample performance of

the proposed tests as well as to provide a comparison with the tests proposed in Leybourne

et al. (2007). The latter class of tests is based on a doubly-recursive application of the unit

root statistic using the local GLS detrending methodology developed in Elliott et al (1996).

12



More specifically, Leybourne et al. (2007) propose the test statistic

M = inf
λ∈(0,1)

inf
τ∈(λ,1]

DFG(λ, τ)

where DFG(λ, τ) is the local GLS detrended ADF unit root t-statistic that uses the obser-

vations between λT and τT . They derive the limit distribution of M for both trending and

non-trending cases and demonstrate that the test is consistent against multiple changes in

persistence, irrespective of whether the initial regime has a unit root or not.

For our Monte-Carlo exercise, we consider cases where the data generating processes

(DGPs) involve no break (size) as well as those that involve one and two breaks (power).

Results are presented for models 1a and 1b. Those for models 2a and 2b are qualitatively

similar and hence not reported. The sample sizes used are T = 150, 240. The maximum

number of allowable breaks is set at five. The lag length in the autoregression is selected

using the Bayesian Information Criterion with the maximum number of lags allowed set

at ten. In our simulation experiments, we first obtain the number of lags based on the

estimation of the alternative model and then use this number in the estimation of the null

model. In all experiments, {et} denotes a sequence of i.i.d. N(0, 1) variables. The errors
{ut} are generated by the ARMA process

ut = ρut−1 + et + θet−1, u0 = 0 (11)

We present results for the following combinations of values of the autoregressive parameter

(ρ) and the moving average parameter (θ): (a) ρ = θ = 0, (b) ρ = 0.3, θ = 0, (c) ρ = 0.5, θ =

0, (d) ρ = 0, θ = 0.5, (e) ρ = 0, θ = −0.5, (f) ρ = 0.3, θ = 0.5, (h) ρ = 0.3, θ = −0.5. The
nominal size for all tests is set at 5%. All experiments are based on 1000 replications.

5.1 The Empirical Size of the Tests

In order to assess the empirical size of the tests, the DGP considered is

• DGP-0:
∆yt = π1∆yt−1 + ut

∆yt = π2∆yt−1 + ut

if

if

t ≤ [0.5T ]
t ≥ [0.5T ] + 1

with y0 = 0.

The base case to be analyzed is π1 = π2 = 0. However, given that our regression

model constrains the parameters governing the short-run dynamics to remain the same across

13



regimes, we also present some results for cases where π1 6= π2 to investigate the effect of

unstable short-run parameters on the empirical size of the tests. Table 2.1 presents results

for the case π1 = π2 = 0. First, when the errors do not contain a MA component, all the

proposed statistics are adequately sized with the null rejection probabilities never exceeding

10% for either sample size. When a positive MA component is present, the UDmax1b test

is somewhat over-sized with T = 150 but the distortions diminish when the sample size is

increased. With a negative MA component, however, the over-sizing problem is more severe

and, in some cases (especially for test statistics based on Model 1b), the distortions remain

prominent even for T = 240. As with standard unit root tests, these size problems arise

from the downward bias in the persistence parameter estimates under the null hypothesis of

a unit root.

TheM test, on the other hand, is seriously over-sized irrespective of the nature and extent

of serial correlation in the errors. The rejection probability is at least 15% for T = 150 and

never falls below 10% even for T = 240. These distortions are especially severe (much

more so compared to the proposed tests) with negative MA errors. For instance, with

ρ = 0, θ = −0.5 and T = 240, the M test rejects the null hypothesis in 83% of the samples.

Since the M test is based on the application of unit root tests to data sub-samples, the bias

in the autoregressive parameter estimates is exacerbated which in turn contributes to the

poor finite sample performance of the test under the null hypothesis.

Table 2.2 reports the rejection frequencies when π1 6= π2 and ρ = θ = 0. The proposed

tests have empirical sizes that are generally greater than the ones with π1 = π2 = 0 although

the magnitude of the distortions is not substantial. In contrast, the null rejection probabilities

of the M test increase quite sharply relative to the case where the DGP does not involve a

shift in short-run dynamics across regimes.

5.2 The Case with One Break

Here we provide a power comparison of the various tests when the DGPs involve a single

break in persistence. We consider the following DGPs:

• DGP-1:
yt = yt−1 + ut

yt = αyt−1 + ut

if

if

t ≤ [Tλ01]
t ≥ [Tλ01] + 1
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• DGP-2:
yt = αyt−1 + ut

yt = yt−1 + ut

if

if

t ≤ [Tλ01]
t ≥ [Tλ01] + 1

• DGP-3:
yt = yt−1 + π1∆yt−1 + et

yt = αyt−1 + π2∆yt−1 + et

if

if

t ≤ [Tλ01]
t ≥ [Tλ01] + 1

• DGP-4:
yt = αyt−1 + π1∆yt−1 + et

yt = yt−1 + π2∆yt−1 + et

if

if

t ≤ [Tλ01]
t ≥ [Tλ01] + 1

• DGP-5:
yt = yt−1 + ut

yt − y[Tλ01] = α(yt−1 − y[Tλ01]) + ut

if

if

t ≤ [Tλ01]
t ≥ [Tλ01] + 1

DGP-1 and DGP-2 are processes which involve a shift in the persistence parameter but no

change in the short-run dynamics across regimes. DGP-3 and DGP-4 allow for the short-run

dynamics to simultaneously change as well. DGP-5 is a variant of DGP-1 that is considered

in Leybourne et al. (2007). Such a process is designed to avoid sharp jumps to zero at the

break point between the I(1) and I(0) regimes and ensures a joining up of these regimes.

We consider three values for the location of the break: λ01 = 0.3, 0.5, 0.7. We present results

for six values of the autoregressive parameter: α = 0.5, 0.6, 0.7, 0.8, 0.9. Given the size

distortions of the M test, all power comparisons are size-adjusted.

Tables 3.1 and 3.2 provide results pertaining to DGP-1. As expected, the power of all

the tests decrease as α increases regardless of the location of the break. Power is also lower

with serially correlated errors compared to the i.i.d. case, except when the errors contain a

negative MA component. The tests are thus subject to a clear size-power trade-off in this

latter case. The loss in power from introducing an autoregressive component in the errors is

especially significant for the M test - power falls from 81% to 26% as ρ increases from zero

to 0.5 when α = 0.5 and T = 150. In comparison, the power performance of the proposed

tests is much more robust to the extent of error serial correlation. Power also varies with the

location of the break - power is high when the break occurs early in the sample (λ01 = 0.3) and

low when the break occurs relatively late (λ01 = 0.7). This is due to the fact that the longer

the I(0) segment, the further away the series is from a pure unit root process. Relative to

the proposed tests, however, the M test is much more sensitive to break location. A useful
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feature of theW1(1) test is that it rejects the null almost as frequently as the supF1a(1) test

irrespective of the break location and the sample size. The proposed tests clearly outperform

the M test in terms of power.

The results for DGP-2 are reported in Tables 4.1 and 4.2. Contrary to DGP-1, power

is now higher when the break occurs late in the sample. The supF1b(1) test dominates the

M test in most cases regardless of break location and sample size. The rejection probabilities

of theM andW1(1) tests are broadly similar, except when the errors contain a pure negative

MA component, in which case theM test rejects the null more often. Comparing the results

for DGP-2 with those in DGP-1 also reveals that the cost in terms of power of not knowing

the direction of shift is much higher when the true process involves an I(0)-I(1) shift as

opposed to an I(1)-I(0) shift.

For DGP-3 and DGP-4, the results are presented in Tables 5.1 and 5.2 for λ01 = 0.5.

Again, the proposed tests generally outperform the M test for the break magnitudes and

sample sizes considered. An exception is theW1(1) test which has lower power than both the

supF1b(1) and M tests when the first regime is stationary. Finally, the rejection frequencies

for DGP-5 reported in Table 6 indicate that, relative to DGP-1, the M test now has higher

power while the proposed tests have lower power, though the latter still exhibits the highest

power.

5.3 The Case With Two Breaks

With two breaks in persistence, we report results for three configurations for the locations of

the breaks: (λ01, λ
0
2) = (0.3, 0.6), (0.3, 0.7), (0.4, 0.7). For the experiments in this section, we

present results for the two breaks test, the UDmax and Wmax1 tests which do not require

knowledge either of the direction or the number of breaks (except for an upper bound) and

the M test. The DGPs considered are the following:

• DGP-6:
yt = yt−1 + ut

yt = αyt−1 + ut

yt = yt−1 + ut

if

if

if

t ≤ [Tλ01]
[Tλ01] + 1 ≤ t ≤ [Tλ02]

t ≥ [Tλ02] + 1
• DGP-7:

yt = αyt−1 + ut

yt = yt−1 + ut

yt = αyt−1 + ut

if

if

if

t ≤ [Tλ01]
[Tλ01] + 1 ≤ t ≤ [Tλ02]

t ≥ [Tλ02] + 1
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• DGP-8:
yt = yt−1 + π1∆yt−1 + et

yt = αyt−1 + π2∆yt−1 + et

yt = yt−1 + et

if

if

if

t ≤ [Tλ01]
[Tλ01] + 1 ≤ t ≤ [Tλ02]

t ≥ [Tλ02] + 1

• DGP-9:
yt = αyt−1 + π1∆yt−1 + et

yt = yt−1 + π2∆yt−1 + et

yt = αyt−1 + et

if

if

if

t ≤ [Tλ01]
[Tλ01] + 1 ≤ t ≤ [Tλ02]

t ≥ [Tλ02] + 1

• DGP-10:

yt = yt−1 + ut

yt − y[Tλ01] = α(yt−1 − y[Tλ01]) + ut

yt = yt−1 + ut

if

if

if

t ≤ [Tλ01]
[Tλ01] + 1 ≤ t ≤ [Tλ02]

t ≥ [Tλ02] + 1

First, consider the power of the various tests when the data are generated by DGP-6 and

DGP-7. These results are presented in Tables 7.1-8.2. For DGP-6, the proposed tests clearly

perform much better than the M test across location configurations and sample sizes. The

UDmax and Wmax1 tests have power very close to that of the supF1a(2) test so that little

is lost when the number of breaks is unknown. Note that the power of all tests is higher

for λ01 = 0.3, λ02 = 0.7 compared to the other two location pairs. This is not unexpected

since power should depend positively on the length of the I(0) segment in the data. For

DGP-7, our tests again dominate theM test except with pure negative MA errors, although

the discrepancy in this latter case is not substantial. In accordance with the single break

case, not knowing the number of breaks entails a non-negligible loss in power when the first

regime is I(0). The performance of the M test is again found to be quite sensitive to the

location of the breaks for both DGP-6 and DGP-7.

The rejection frequencies for DGP-8 and DGP-9 are presented in Tables 9.1 and 9.2. For

DGP-9, the rejection frequencies of the tests are close to those in the absence of regime-

specific short-run dynamics. Surprisingly though, in the case of DGP-8, the proposed tests

are more powerful relative to the case with no change in the short-run dynamics even though

the tests are based against the alternative that these dynamics remain unchanged across

regimes. Finally, the conclusions based on power results for DGP-10 reported in Table 10

are qualitatively similar to those discussed for DGP-5.
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5.4 Summary and Practical Recommendations

In summary, the simulation results about the finite sample size of the tests reveal that our

proposed tests are relatively better sized than that developed in Leybourne et al. (2007).

The latter test have a substantial probability of over-rejection regardless of the degree of

serial correlation in the errors. In most cases, the tests proposed are also shown to have a

superior performance in terms of rejecting the null when the alternatives of interest drive

the data generating process. Given the wide range of tests considered in this paper, some

recommendations for applied work are in order. If the number of breaks is unknown but

the direction of change is known under the alternative hypothesis, one can simply use the

UDmax test given that the test has power almost as high as that of the test of no change

versus an alternative hypothesis that specifies the true number of changes. If the direction as

well as the number of changes is unknown, one can apply the two UDmax tests and examine

which of them is significant. Since the test constructed against the alternative in which the

initial regime has a unit root is not consistent against the alternative in which the initial

regime is stationary, we can use this information to identify the initial regime. However, a

rejection by both tests provides no conclusive evidence on the direction of change. In such a

situation, we could rely on the Wmax test but bearing in mind that the test has low power

when the initial regime is stationary. Finally, it is important to note that the tests proposed

should be applied after testing for a unit root using the whole sample. This is needed since

our null hypothesis is that the process is I(1) throughout the sample and ones needs to verify

that it is not I(0) throughout. If a rejection occurs, there is obviously no need to carry the

change in persistence tests since standard unit root tests will have no power against processes

which show changes in persistence so that upon a rejection one can safely conclude that the

process is I(0) throughout.

6 Conclusion

This paper has presented issues related to testing for multiple structural changes in the

persistence of a univariate time series. In contrast to the existing literature which has

primarily focused on sub-sample unit root tests and tests based on partial sums of residuals,

we propose sup-Wald tests based on the difference between the sum of squared residuals

under the null hypothesis of a unit root and that under the alternative hypothesis that

the process displays changes in persistence over the sample. Our simulation experiments

demonstrate that these tests have adequate finite sample properties. One important issue
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that we have not addressed is how to select the number of breaks. Indeed, we have assumed

that the number of breaks is known a priori or less than some known upper bound. Bai

and Perron (1998) propose a sequential strategy based on repeated application of the single

break test in the context of stationary regression models. Such a strategy, however, does not

seem to directly extend to our framework given that the process is stationary in only some

regimes but has a unit root in others. Developing methods that would allow the consistent

estimation of the number of breaks in this framework is an important avenue for future

research. Finally, it is important to address the issue of the estimation of the break dates

and develop method to form confidence intervals. These and other issues are the object of

ongoing research.
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Appendix
As a matter of notation, throughout, we use the matrix norm kBk1 = supkxk≤1 kBxk,

with k.k the standard Euclidean norm. Note that kBk1 equals the square root of the
largest eigenvalue of B0B and that kBxk ≤ kBk1 kxk. Also, we use the usual norm
kBk2 = tr(B0B), such that kBk21 ≤ kBk2. Note that for any conformable matrices B1 and
B2, we have kB1B2k ≤ kB1k kB2k1. Next, we define z̄j = (Tj − Tj−1)−1

PTj
t=Tj−1+1 zt and

z̄j,−1 = (Tj − Tj−1)−1
PTj

t=Tj−1+1 zt−1. Finally, we define the following regime-wise demeaned
and detrended Brownian motions:

W (j)(r) =W (r)− (λj − λj−1)−1
Z λj

λj−1
W (r)dr

fW (j)(r) =W (j)(r)−
⎡⎣ R λj

λj−1
rW (j)(r)drR λj

λj−1

n
r − (λj − λj−1)−1

R λj
λj−1

rdr}2
o
dr

⎤⎦"r − (λj − λj−1)−1
Z λj

λj−1
rdr

#

where W (.) denotes a standard Brownian motion on [0, 1].
We first state a Lemma about the weak convergence of various sample moments whose

proof is standard and thus omitted.

Lemma A.1 If {wt} is generated as wt = wt−1 + vt, where vt satisfies Assumption A2, the
following weak convergence results hold (for i = 1, ..., k + 1):

a) T−3/2
P[Tλi]

t=1 wt ⇒ σ
R λi
0

W (r)dr,

b) T−3/2
P[Tλi]

t=1 w2t ⇒ σ2
R λi
0

W (r)2dr

c) T−1
P[Tλi]

t=1 wt−1ut ⇒ σ2
R λi
0

W (r)dW (r)

Proof of Theorem 1: We shall prove the theorem for models 1a and 2a. The proofs for
the other models are similar and hence omitted.
Model 1a: We have

yt = ci + αiyt−1 + ut, t = Ti−1 + 1, ..., Ti

for i = 1, ..., k + 1 with αi = 1, ci = 0 in odd regimes and |αi| < 1, ci unrestricted in even
regimes. Under the null hypothesis of a unit root throughout the sample, the sum of squared
residuals is

SSR0 =
TX
t=1

(yt − yt−1)2 =
TX
t=1

u2t
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If k is even, the sum of squares residuals under the alternative hypothesis is

SSR1a,k =

k/2X
i=1

⎡⎣ T2iX
t=T2i−1+1

{yt − ȳ2i − α̂2i(yt−1 − ȳ2i,−1}2
⎤⎦+ k/2X

i=0

T2i+1X
t=T2i+1

u2t (A.1)

where, for i = 1, ..., k/2,

α̂2i =

PT2i
t=T2i−1+1(yt − ȳ2i)(yt−1 − ȳ2i,−1)PT2i

t=T2i−1+1(yt−1 − ȳ2i,−1)2

Note that, under the null, yt = yt−1+ut which implies ȳ2i = ȳ2i,−1+ ū2i. Substituting in the
expression for α̂2i and using Lemma A.1, we have

T (α̂2i − 1) =
T−1

PT2i
t=T2i−1+1(yt − ȳ2i)ut

T−2
PT2i

t=T2i−1+1(yt−1 − ȳ2i,−1)2
⇒
R λ2i
λ2i−1

W (2i)(r)dW (r)R λ2i
λ2i−1

[W (2i)(r)]
2
dr

From (A.1), we thus have, under the null hypothesis,

SSR1a,k

=

k/2X
i=1

⎡⎢⎣−
nPT2i

t=T2i−1+1(yt−1 − ȳ2i,−1)ut
o2

PT2i
t=T2i−1+1(yt−1 − ȳ2i,−1)2

+
T2iX

t=T2i−1+1

(ut − ū2i)
2

⎤⎥⎦+ k/2X
i=0

T2i+1X
t=T2i+1

u2t

=

k/2X
i=1

⎡⎢⎣−
nPT2i

t=T2i−1+1(yt−1 − ȳ2i,−1)ut
o2

PT2i
t=T2i−1+1(yt−1 − ȳ2i,−1)2

− T

T2i − T2i−1

⎧⎨⎩T−1/2
T2iX

t=T2i−1+1

ut

⎫⎬⎭
2
⎤⎥⎦+ TX

t=1

u2t

so that

SSR0 − SSR1a,k

=

k/2X
i=1

⎡⎢⎣
nPT2i

t=T2i−1+1(yt−1 − ȳ2i,−1)ut
o2

PT2i
t=T2i−1+1(yt−1 − ȳ2i,−1)2

+
T

T2i − T2i−1

⎧⎨⎩T−1/2
T2iX

t=T2i−1+1

ut

⎫⎬⎭
2
⎤⎥⎦

⇒ σ2
k/2X
i=1

⎡⎢⎣
nR λ2i

λ2i−1
W (2i)(r)dW (r)

o2
R λ2i
λ2i−1

[W (2i)(r)]2dr
+

1

λ2i − λ2i−1
{W (λ2i)−W (λ2i−1)}2

⎤⎥⎦
It is easy to show that

T−1SSR1a,k = T−1
TX
t=1

u2t + op(1)
p→ σ2
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so that

kF1a(λ, k)⇒
k/2X
i=1

⎡⎢⎣
nR λ2i

λ2i−1
W (2i)(r)dW (r)

o2
R λ2i
λ2i−1

[W (2i)(r)]2dr
+

1

λ2i − λ2i−1
{W (λ2i)−W (λ2i−1)}2

⎤⎥⎦
If k is odd,

SSR1a,k =

(k−1)/2X
i=0

T2i+1X
t=T2i

u2t +

(k+1)/2X
i=1

⎡⎣ T2iX
t=T2i−1+1

{yt − ȳ2i − α̂2i(yt−1 − ȳ2i,−1}2
⎤⎦

and similar derivations show that

(k + 1)F1a(λ, k)⇒
(k+1)/2X
i=1

⎡⎢⎣
nR λ2i

λ2i−1
W (2i)(r)dW (r)

o2
R λ2i
λ2i−1

[W (2i)(r)]2dr
+

1

λ2i − λ2i−1
{W (λ2i)−W (λ2i−1)}2

⎤⎥⎦
Model 2a: We have

yt = ci + bit+ αiyt−1 + ut, t = Ti−1 + 1, ..., Ti,

with αi = 1, bi = 0, ci unrestricted in odd regimes and |αi| < 1, bi, ci unrestricted in even
regimes. Under the null, yt = c+ yt−1 + ut. For this model, we have

SSR∗0 =
TX
t=1

"
yt − yt−1 − T−1

TX
t=1

(yt − yt−1)

#2
=

TX
t=1

(ut − ū)2

Again, consider first the case with k even. For t ∈ [T2i−1 + 1, T2i], define

eyt = yt − ȳ2i −
PT2i

t=T2i−1+1(yt − ȳ2i)(t− t̄2i)PT2i
t=T2i−1+1(t− t̄2i)2

(t− t̄2i)

eyt−1 = yt−1 − ȳ2i,−1 −
PT2i

t=T2i−1+1(yt−1 − ȳ2i,−1)(t− t̄2i)PT2i
t=T2i−1+1(t− t̄2i)2

(t− t̄2i)

Then, under the null hypothesis, we can write

eyt = eyt−1 + ut − ū2i −
PT2i

t=T2i−1+1(t− t̄2i)utPT2i
t=T2i−1+1(t− t̄2i)2

(t− t̄2i) (A.2)

We have

SSR2a,k =

k/2X
i=1

⎡⎣ T2iX
t=T2i−1+1

{eyt − eα2ieyt−1}2
⎤⎦ (A.3)

+

k/2X
i=0

"
T2i+1X

t=T2i+1

{yt − yt−1 − 1

T2i+1 − T2i

T2i+1X
t=T2i+1

(yt − yt−1)}2
#
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where eα2i = PT2i
t=T2i−1+1 eyteyt−1PT2i
t=T2i−1+1 ey2t−1 (A.4)

Using (A.2) and (A.4), we can express (A.3) as

SSR2a,k =

k/2X
i=1

⎡⎣−{PT2i
t=T2i−1+1 eyt−1ut}2PT2i
t=T2i−1+1 ey2t−1 +

T2iX
t=T2i−1+1

(ut − ū2i)
2 − {

PT2i
t=T2i−1+1(t− t̄2i)ut}2PT2i
t=T2i−1+1(t− t̄2i)2

⎤⎦
+

k/2X
i=0

T2i+1X
t=T2i+1

(ut − ū2i+1)
2

We thus get

SSR∗0 − SSR2a,k = −
Ã
T−1/2

TX
t=1

ut

!2
+

k/2X
i=0

⎡⎣ T

T2i+1 − T2i

Ã
T−1/2

T2i+1X
t=T2i+1

ut

!2⎤⎦

+

k/2X
i=1

⎡⎢⎢⎣
{ T2i

t=T2i−1+1 yt−1ut}
2

T2i
t=T2i−1+1 y

2
t−1

+ T
T2i−T2i−1

n
T−1/2

PT2i
t=T2i−1+1 ut

o2
+
{ T2i

t=T2i−1+1(t−t̄2i)ut}
2

T2i
t=T2i−1+1(t−t̄2i)2

⎤⎥⎥⎦
which yields

2kF2a(λ, k) ⇒ −{W (1)}2 +
k/2X
i=0

∙
1

λ2i+1 − λ2i
{W (λ2i+1)−W (λ2i)}2

¸

+

k/2X
i=1

⎡⎢⎢⎢⎣
λ2i
λ2i−1 W

(2i)(r)dW (r)
2

λ2i
λ2i−1 [W

(2i)(r)]2dr
+ 1

λ2i−λ2i−1 {W (λ2i)−W (λ2i−1)}2

+
λ2i
λ2i−1{r−(λ2i−λ2i−1)

−1 λ2i
λ2i−1 rdr}dW (r)

2

λ2i
λ2i−1{r−(λ2i−λ2i−1)

−1 λ2i
λ2i−1 rdr}

2dr

⎤⎥⎥⎥⎦
If k is odd,

SSR2a,k =

(k−1)/2X
i=0

T2i+1X
t=T2i+1

{yt − yt−1 − 1

T2i+1 − T2i

T2i+1X
t=T2i+1

(yt − yt−1)}2

+

(k+1)/2X
i=1

⎡⎣ T2iX
t=T2i−1+1

{eyt − eα2ieyt−1}2
⎤⎦

and similar derivations yield the result stated in Theorem 1.
Given these limits, the results of Theorem 1 follow from an application of the Continuous

Mapping Theorem. ¥
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We will prove Theorem 2 for model 1a when k is even. The proof is similar for the other
cases. The autoregression in the i-th regime (i = 1, ..., k/2) is

∆yt = c2i + (α2i − 1)yt−1 +
lTX
j=1

πj∆yt−j + v∗t (A.5)

with v∗t = et+vt, and et =
P

j>lT
πj∆yt−j. Let η0t = (∆yt−1, ...,∆yt−lT ), η = (η1, ..., ηT )

0, Π =
(π1, ..., πlT )

0, V ∗ = (v∗1, ..., v
∗
T )
0 = V + E with V = (v1, ..., vT )

0 and E = (e1, ...eT )0. We can
write (A.5) as

∆yt = ci + (αi − 1)yt−1 + η0tΠ+ v∗t

with αi = 1, ci = 0 in odd regimes and |αi| < 1, ci unrestricted in even regimes. For
j = 1, ..., k + 1, we denote ∆Yj = (∆yTj−1+1, ...,∆yTj)

0, η∗j = (ηTj−1+1, ..., ηTj)
0, Ej =

(eTj−1+1, ..., eTj)
0, Vj = (vTj−1+1, ..., vTj)

0 and V ∗j = (v∗Tj−1+1, ..., v
∗
Tj
)0. For i = 1, ..., k/2, let

γ̂2i = (ĉ2i, α̂2i− 1)0 and Z2i = (zT2i−1+1, ..., zT2i)0 where zt = (1, yt−1)0 for t = T2i−1+1, ..., T2i.
Define the (2× 2) diagonal matrix DT = diag(T−1/2, T−1).
The proof of Theorem 2 is based on the following Lemma.

Lemma A.2 Assume yt is generated as yt = yt−1+ut. Under A1-A3, we have (a) || (η0η)−1 ||1 =
Op(T

−1), (b) (i) ||DTZ
0
2iη

∗
2i|| = Op(l

1/2
T ) and (ii) ||DTZ

0
2iE2i|| = op(l

−1
T ), for i = 1, ..., k/2, (c)

||η0V || = Op(T
1/2l

1/2
T ), (d) ||η0E|| = op(T l

−1/2
T ), (e) ||E 0E|| = op(T ), (f) ||E 0V || = op(T ), (g)

||η0V ∗|| = op(Tl
−1/2
T ), (h)

°°°°hη0η −Pk/2
i=1 {η∗02iZ2i(Z 02iZ2i)−1Z 02iη∗2i}

i−1°°°°
1

= Op(T
−1)

Proof of Lemma A.2: (a) Let Γ∗l = (Γi−j)
lT
i,j=1, where Γh = E(utut−h). From Berk (1974,

Lemma 3), it follows that E|| (T−1η0η)−1−(Γ∗l )−1||21 ≤ C1T
−1l2T for some constant C1. Hence,

|| (T−1η0η)−1−(Γ∗l )−1||1 = Op(T
−1/2lT ). Since k(Γ∗l )−1k1 = O(1) uniformly in lT for sequences

such that T−1/2lT → 0, we have¯̄̄°°°¡T−1η0η¢−1°°°
1
− °°(Γ∗l )−1°°1 ¯̄̄ ≤ °°°¡T−1η0η¢−1 − (Γ∗l )−1°°°1 = op(1)

and the result follows.

(b) For (i), the result follows since each element of DTZ
0
2iη

∗
2i is Op(1) and the number of

elements is of order O(lT ). For (ii), The result follows from Lemma A.2(a) of Lütkepohl and
Saikkonen (1999).

(c) The elements of T−1/2η0V are each Op(1) (since each element of ηt and vt are uncor-
related), and the result follows since the number of elements is of order O(lT ).
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(d) We have

E
°°T−1η0E°° ≤ T−1

TP
t=1

E(ketηtk) ≤ {E(kηtk2)E(e2t )}1/2 = C2l
1/2
T {E(

X
j>lT

∆y0t−jΠj)
2}1/2

≤ C2l
1/2
T {

X
i>lT

X
j>lT

|Γi−j| |Πi| |Πj|}1/2 ≤ C3l
1/2
T

X
j>lT

|Πj| = o(l
−1/2
T )

using the fact that |Γi−j| is uniformly bounded by the stationarity of ut.
(e) We have

E
°°T−1E 0E°° = T−1

TX
t=1

E(e2t ) = T−1
TX
t=1

X
i>lT

X
a>lT

ΠiE(∆yt−i∆y0t−a)Πa

≤ T−1
X
i>lT

X
a>lT

TX
t=1

|Πi| |Γa−i| |Πa| ≤ o(l−2T ) = o(1)

where we again use the fact that |Γj| is bounded uniformly in j.

(f) We have T−1
PT

t=1 vtet = T−1
P

i>lT
Π0i
PT

t=1∆yt−ivt, so that

||T−1
TX
t=1

vtet|| ≤ T−1
X
i>lT

kΠik ||
TX
t=1

∆yt−ivt|| = op(l
−1
T T−1/2) = op(1)

where we used the fact that T−1/2
PT

t=1∆yt−ivt = Op(1).

(g) Since V ∗ = V +E , ||η0V ∗|| ≤ ||η0V ||+ ||η0E|| = Op(T
1/2l

1/2
T )+op(T l

−1/2
T ) = op(T l

−1/2
T ).

(h) Let

q =

°°°°°°
⎡⎣T−1η0η − T−1

k/2X
i=1

©
η∗02iZ2i(Z

0
2iZ2i)

−1Z 02iη
∗
2i

ª⎤⎦−1 − (Γ∗l )−1
°°°°°°
1

and

Q = ||T−1η0η − T−1
k/2X
i=1

©
η∗02iZ2i(Z

0
2iZ2i)

−1Z 02iη
∗
2i

ª− Γ∗l ||1.

Then we have
q ≤ ©q + °°(Γ∗l )−1°°1ªQ°°(Γ∗l )−1°°1

or,

q ≤ k(Γ∗l )−1k21Q
1−Q k(Γ∗l )−1k1

(A.6)
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Also,

Q ≤ °°T−1η0η − Γ∗l
°°
1
+

°°°°°°T−1
k/2X
i=1

©
η∗02iZ2i(Z

0
2iZ2i)

−1Z 02iη
∗
2i

ª°°°°°°
=

°°T−1η0η − Γ∗l
°°
1
+ T−1

k/2X
i=1

©kη∗02iZ2iDTk
°°(DTZ

0
2iZ2iDT )

−1°° kDTZ
0
2iη

∗
2ik
ª

= Op(lT/T
1/2) + T−1Op(l

1/2
T )Op(1)Op(l

1/2
T ) = Op(lT/T

1/2)

Since k(Γ∗l )−1k1 = Op(1), from (A.6), we get q = Op(lT/T
1/2). We thus have¯̄̄̄

¯̄
°°°°°°
⎡⎣T−1η0η − T−1

k/2X
i=1

©
η∗02iZ2i(Z

0
2iZ2i)

−1Z 02iη
∗
2i

ª⎤⎦−1°°°°°°
1

− °°(Γ∗l )−1°°1
¯̄̄̄
¯̄ = Op(lT/T

1/2) = op(1)

so that °°°°°°
⎡⎣T−1η0η − T−1

k/2X
i=1

©
η∗02iZ2i(Z

0
2iZ2i)

−1Z 02iη
∗
2i

ª⎤⎦−1°°°°°°
1

= Op(1)

and the result follows. ¥

Proof of Theorem 2: For i = 1, ..., k + 1, we denote the vector of residuals in the j-th
regime under the null and alternative hypotheses by eV ∗i and V̂ ∗i respectively. Then we have

eV ∗i = ∆Yi − η∗i eΠ,
V̂ ∗2i = ∆Y2i − η∗2iΠ̂− Z2iγ̂2i,

V̂ ∗2i+1 = ∆Y2i − η∗2iΠ̂,

for i = 1, ..., k + 1

for i = 1, ..., k/2

for i = 0, ..., k/2

(A.7)

where eΠ−Π = (η0η)−1 η0V ∗ (A.8)

under H0. Also, Π̂ and γ̂2i satisfy the first order conditions

Z 02iV̂
∗
2i = 0, for i = 1, ..., k/2 (A.9)

k/2X
i=1

η∗2iV̂
∗
2i +

k/2X
i=0

η∗2i+1V̂
∗
2i+1 = 0 (A.10)

Under H0, from (A.10), we have

Π̂−Π = (η0η)−1(η0V ∗ −
k/2X
i=1

η∗02iZ2iγ̂2i) (A.11)
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Next, from (A.9), for i = 1, ..., k/2,

D−1
T δ̂2i = (DTZ

0
2iZ2iDT )

−1
h
DTZ

0
2iη

∗
2i(Π− Π̂) +DTZ

0
2iE2i +DTZ

0
2iV2i

i
(A.12)

Solving for (Π̂−Π) from (A.12) and (A.11), we get

Π̂−Π =

⎡⎣η0η − k/2X
i=1

©
η∗02iZ2i(Z

0
2iZ2i)

−1Z 02iη
∗
2i

ª⎤⎦−1 ⎡⎣η0V ∗ − k/2X
i=1

©
η∗02iZ2i(Z

0
2iZ2i)

−1Z 02iV
∗
2i

ª⎤⎦
(A.13)

Using parts (b), (g) and (h) of Lemma A.2, we get ||Π̂ − Π|| = op(l
−1/2
T ). Then we have,

using Lemma A.2(b),°°°(DTZ
0
2iZ2iDT )

−1DTZ
0
2iη

∗
2i(Π− Π̂)

°°° ≤ °°(DTZ
0
2iZ2iDT )

−1°° kDTZ
0
2iη

∗
2ik
°°°(Π− Π̂)

°°°
= Op(1).Op(l

1/2
T )op(l

−1/2
T ) = op(1)

Also, kDTZ
0
2iE2ik = op(l

−1
T ). Using this in (A.12), we have

D−1
T γ̂2i = (DTZ

0
2iZ2iDT )

−1DTZ
0
2iV2i + op(1) (A.14)

Further, from (A.8) and (A.13), we get

Π̂− eΠ = −(η0η)−1 k/2X
i=1

{η∗02iZ2iγ̂2i} (A.15)

so that °°°Π̂− eΠ°°° ≤ °°(η0η)−1°°
1

°°°°°°
k/2X
i=1

©
(η∗02iZ2iDT )(D

−1
T γ̂2i)

ª°°°°°°
≤ °°(η0η)−1°°

1

k/2X
i=1

kη∗02iZ2iDTk
°°D−1

T γ̂2i
°° = Op(l

1/2
T T−1) (A.16)

We can write, from (A.7), for i = 1, ..., k/2,ev∗2i = v̂∗2i + Z2iγ̂2i + η∗2i(Π̂− eΠ)
and for i = 0, ..., k/2, ev∗2i+1 = v̂∗2i+1 + η∗2i+1(Π̂− eΠ)
Thus the numerator of the F statistic can be written as

SSR0 − SSR1a,k =

k/2X
i=1

{ev∗02iev∗2i − v̂∗02iv̂
∗
2i}+

k/2X
i=0

{ev∗02i+1ev∗2i+1 − v̂∗02i+1v̂
∗
2i+1}

=

k/2X
i=1

(D−1
T γ̂2i)(DTZ

0
2iZ2iDT )D

−1
T γ̂2i + (Π̂− eΠ)0 k/2X

i=1

(η∗02iZ2iDT )(D
−1
T γ̂2i)

(A.17)
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Next,°°°°°°(Π̂− eΠ)0
k/2X
i=1

(η∗02iZ2iDT )(D
−1
T γ̂2i)

°°°°°° ≤
°°°Π̂− eΠ°°° k/2X

i=1

k(η∗02iZ2iDT )k
°°(D−1

T γ̂2i)
°°

= Op(l
1/2
T T−1).Op(l

1/2
T ).Op(1) = Op(lTT

−1) = op(1)

Then, using (A.14) in (A.17), we have

SSR0 − SSR1a,k =

k/2X
i=1

©
V 0
2iZ2i(DTZ

0
2iZ2iDT )

−1DTZ
0
2iV2i

ª
+ op(1) (A.18)

Under H0, we have the Beveridge-Nelson decomposition,

yt = d(1)wt + ū0 − ūt

where wt =
Pt

j=1 vj, ūt =
P∞

s=0 d̄svt−s, d̄s =
P∞

i=s+1 di. Note that (ūt) is stochastically

of smaller order of magnitude than (wt). Then for r ∈ (0, 1], we have T−2
P[Tr]

t=1 y
2
t =

d(1)2T−2
P[Tr]

t=1 w
2
t + op(1) and T−1

P[Tλi]
t=1 yt−1vt = d(1)T−1

P[Tr]
t=1 wt−1vt+ op(1). Using these

results in (A.18), we get

SSR0 − SSR1a,k ⇒ σ2
k/2X
i=1

⎡⎢⎣
nR λ2i

λ2i−1
W (2i)(r)dW (r)

o2
R λ2i
λ2i−1

[W (2i)(r)]2dr
+

1

λ2i − λ2i−1
{W (λ2i)−W (λ2i−1)}2

⎤⎥⎦
Using the fact that T−1SSR1a,k

p→ σ2, the result follows. ¥

Proof of Theorem 3: We will prove the result for Model 1a and k even. To show that
the test is consistent, we will show that for λ = (λ01, ..., λ

0
k), the true break fractions, the test

diverges at rate T . To see this, first note that, under the alternative hypothesis, (A.17) still
holds. Next, we have °°°Π̂− eΠ°°° ≤ °°(η0η)−1°° k/2X

i=1

kη∗02iZ2ik kγ̂2ik

Then, using the fact that γ̂2i
p→ γ02i where γ

0
2i = (c

0
2i, α

0
2i−1)0 denotes the true value of γ2i, as

well as the fact that kη∗02iZ2ik = Op(T ) and k(η0η)−1k = Op(T
−1), we get ||Π̂− eΠ|| = Op(1) so

that the second term of (A.17) is Op(T ). The first term is also Op(T ) since Z 02iZ2i = Op(T ).
Given that T−1SSR1a,k

p→ σ2, the result follows. ¥

A-9



Table 1: Asymptotic Critical Values

(A) Non-trending Case

sup F1a,k sup F1b,k W1k
Sig. Level Number of Breaks, k Number of Breaks, k Number of Breaks, k

1 2 3 4 5 UDmax1a 1 2 3 4 5 UDmax1b 1 2 3 4 5 Wmax1

10% 7.94 9.47 7.08 7.04 5.11 9.84 5.41 5.64 6.05 5.33 4.84 6.67 8.08 9.51 7.28 7.10 5.40 9.86
5% 8.88 10.62 7.73 7.67 5.56 10.87 6.39 6.33 6.68 5.84 5.29 7.36 8.99 10.62 7.91 7.71 5.79 10.90
2.5% 9.93 11.64 8.33 8.30 5.95 11.85 7.28 6.84 7.35 6.31 5.70 7.99 10.00 11.64 8.49 8.32 6.21 11.95
1% 11.11 12.72 9.19 9.05 6.46 13.00 8.28 7.42 8.04 6.87 6.17 8.64 11.21 12.72 9.44 9.05 6.63 13.02

(B) Trending Case

sup F2a,k sup F2b,k W2k
Sig. Level Number of Breaks, k Number of Breaks, k Number of Breaks, k

1 2 3 4 5 UDmax2a 1 2 3 4 5 UDmax2b 1 2 3 4 5 Wmax2

10% 7.07 6.90 5.78 5.36 4.27 7.61 5.67 5.50 5.24 4.82 4.12 6.17 7.28 7.01 5.96 5.48 4.46 7.71
5% 7.84 7.57 6.18 5.77 4.57 8.27 6.52 6.02 5.67 5.17 4.39 6.78 7.98 7.60 6.36 5.86 4.74 8.43
2.5% 8.49 8.20 6.56 6.14 4.80 9.07 7.12 6.43 6.08 5.47 4.69 7.27 8.75 8.22 6.77 6.18 4.98 9.18
1% 9.64 9.15 7.23 6.59 5.14 10.01 8.07 7.00 6.59 5.82 4.97 8.17 9.73 9.18 7.30 6.63 5.34 10.07



Table 2.1: Empirical Size (DGP-0, 1  2  0, Nominal Size  5%)

    0   0.3,   0   0.5,   0   0,   0.5   0,   −0.5   0.3,   0.5   0.3,   −0.5

T  150 T  240 T  150 T  240 T  150 T  240 T  150 T  240 T  150 T  240 T  150 T  240 T  150 T  240

sup F1a1 .05 .06 .07 .06 .05 .06 .06 .07 .10 .07 .05 .07 .11 .10

sup F1a2 .04 .05 .04 .06 .03 .05 .05 .07 .07 .06 .06 .06 .10 .12

UDmax1a .05 .05 .06 .05 .04 .05 .07 .07 .14 .08 .07 .07 .12 .16

sup F1b1 .07 .05 .07 .06 .07 .06 .10 .07 .11 .11 .09 .07 .16 .15

sup F1b2 .06 .05 .09 .06 .08 .05 .11 .07 .19 .12 .10 .08 .18 .18

UDmax1b .07 .07 .10 .08 .07 .06 .13 .08 .31 .15 .11 .09 .23 .25

W11 .05 .06 .08 .06 .07 .06 .08 .08 .13 .10 .07 .07 .15 .13

W12 .04 .05 .04 .06 .03 .05 .05 .07 .12 .07 .06 .06 .10 .13

Wmax1 .05 .05 .07 .06 .05 .05 .07 .07 .20 .10 .07 .07 .13 .17

M .17 .13 .15 .12 .15 .11 .23 .17 .90 .83 .25 .17 .45 .41

Table 2.2: Empirical Size (DGP-0, 1 ≠ 2,     0, Nominal Size  5%)

supF1a1 supF1a2 UDmax1a sup F1b1 sup F1b2 UDmax1b W11 W12 Wmax1 M

(A) T  150
1 0, 2 −. 2 .10 .08 .09 .07 .08 .10 .10 .08 .09 .26

1 −. 3, 2 −. 5 .09 .07 .10 .06 .08 .10 .09 .08 .10 .49

(B) T  240
1 0, 2 −. 2 .09 .07 .08 .05 .08 .09 .09 .08 .08 .19

1 −. 3, 2 −. 5 .08 .06 .08 .03 .06 .06 .08 .07 .08 .30



Table 3.1: Empirical Power with One Break and T  150 (DGP-1)

  0.5   0.6   0.7   0.8   0.9

sup F1a1 W11 M sup F1a1 W11 M sup F1a1 W11 M sup F1a1 W11 M sup F1a1 W11 M
(A) 1

0  0.3
    0 1.0 1.0 .99 .99 .99 .89 .92 .93 .56 .58 .59 .23 .17 .18 .07

  0.3,   0 .97 .97 .78 .90 .88 .57 .73 .71 .35 .46 .43 .19 .14 .12 .07

  0.5,   0 .97 .98 .55 .91 .90 .38 .78 .76 .26 .53 .50 .15 .18 .16 .06

  0,   0.5 .97 .96 .83 .92 .90 .68 .80 .78 .44 .54 .50 .24 .18 .17 .09

  0,   −0.5 .99 .98 .99 .97 .96 .98 .91 .87 .82 .66 .60 .41 .25 .20 .12

  0.3,   0.5 .95 .94 .62 .86 .83 .48 .73 .69 .30 .48 .44 .16 .17 .13 .08

  0.3,   −0.5 1.0 1.0 1.0 .99 .99 .98 .95 .95 .81 .73 .73 .42 .25 .27 .14

(B) 1
0  0.5

    0 .99 .99 .81 .96 .96 .56 .81 .81 .28 .52 .52 .10 .19 .20 .06

  0.3,   0 .93 .92 .42 .85 .84 .28 .70 .66 .18 .45 .42 .09 .17 .16 .05

  0.5,   0 .95 .94 .26 .89 .87 .17 .75 .73 .14 .53 .50 .09 .22 .20 .06

  0,   0.5 .95 .94 .51 .89 .87 .37 .75 .72 .23 .50 .47 .12 .21 .19 .07

  0,   −0.5 .99 .88 .92 .84 .78 .74 .70 .62 .43 .43 .35 .16 .15 .12 .07

  0.3,   0.5 .92 .90 .34 .86 .81 .25 .73 .69 .17 .49 .44 .10 .20 .18 .06

  0.3,   −0.5 .98 .98 .93 .97 .96 .77 .85 .84 .45 .56 .53 .18 .19 .18 .08

(C) 1
0  0.7

    0 .92 .91 .29 .78 .78 .14 .63 .63 .08 .44 .43 .05 .19 .20 .04

  0.3,   0 .85 .84 .13 .74 .72 .08 .61 .58 .06 .43 .41 .04 .17 .16 .04

  0.5,   0 .88 .87 .09 .77 .76 .07 .68 .67 .05 .51 .49 .04 .22 .20 .04

  0,   0.5 .87 .85 .17 .77 .75 .12 .62 .60 .07 .45 .43 .05 .18 .16 .05

  0,   −0.5 .68 .61 .32 .53 .46 .20 .41 .34 .11 .25 .20 .06 .09 .07 .04

  0.3,   0.5 .86 .83 .11 .76 .73 .08 .65 .60 .06 .48 .44 .05 .20 .17 .03

  0.3,   −0.5 .88 .87 .42 .75 .73 .21 .55 .53 .13 .35 .32 .07 .12 .12 .05



Table 3.2: Empirical Power with One Break and T  240 (DGP-1)

  0.5   0.6   0.7   0.8   0.9

sup F1a1 W11 M sup F1a1 W11 M sup F1a1 W11 M sup F1a1 W11 M sup F1a1 W11 M
(A) 1

0  0.3
    0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .98 .94 .94 .74 .39 .39 .21

  0.3,   0 1.0 1.0 1.0 1.0 1.0 .99 .98 .98 .91 .85 .85 .59 .33 .34 .19

  0.5,   0 1.0 1.0 .98 1.0 1.0 .94 .98 .98 .81 .84 .84 .50 .38 .35 .18

  0,   0.5 1.0 1.0 .99 1.0 1.0 .96 .98 .97 .85 .83 .81 .54 .38 .36 .17

  0,   −0.5 1.0 1.0 1.0 1.0 1.0 1.0 .98 .99 .97 .91 .93 .74 .40 .53 .22

  0.3,   0.5 1.0 1.0 .95 1.0 .99 .87 .96 .95 .73 .78 .78 .46 .34 .34 .18

  0.3,   −0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .99 .96 .94 .83 .51 .45 .25

(B) 1
0  0.5

    0 1.0 1.0 1.0 1.0 1.0 .98 .99 .99 .79 .84 .84 .37 .38 .37 .12

  0.3,   0 1.0 1.0 .95 .99 .99 .82 .96 .96 .57 .77 .77 .29 .34 .34 .11

  0.5,   0 1.0 1.0 .79 .99 .99 .66 .96 .95 .45 .79 .76 .26 .39 .35 .10

  0,   0.5 1.0 1.0 .92 .99 .99 .79 .96 .95 .55 .76 .74 .29 .38 .36 .10

  0,   −0.5 1.0 .99 .99 1.0 .97 .99 .99 .93 .87 .94 .78 .48 .55 .36 .12

  0.3,   0.5 1.0 1.0 .79 .98 .98 .65 .94 .94 .47 .73 .73 .26 .36 .36 .10

  0.3,   −0.5 1.0 1.0 1.0 1.0 .99 .99 .98 .97 .88 .86 .83 .47 .39 .32 .12

(C) 1
0  0.7

    0 1.0 1.0 .81 .96 .96 .54 .86 .86 .26 .65 .65 .12 .34 .35 .06

  0.3,   0 .98 .98 .47 .92 .92 .30 .81 .82 .17 .63 .63 .09 .32 .33 .06

  0.5,   0 .97 .96 .31 .93 .92 .21 .84 .82 .13 .68 .66 .08 .36 .34 .05

  0,   0.5 .98 .99 .47 .92 .95 .31 .83 .88 .19 .64 .61 .09 .35 .25 .05

  0,   −0.5 .94 .97 .81 .83 .91 .60 .75 .82 .28 .55 .63 .14 .26 .33 .05

  0.3,   0.5 .96 .96 .38 .91 .91 .26 .81 .81 .17 .65 .64 .10 .36 .36 .05

  0.3,   −0.5 .98 .97 .86 .93 .90 .61 .83 .79 .29 .62 .56 .12 .25 .20 .05



Table 4.1: Empirical Power with One Break and T  150 (DGP-2)

  0.5   0.6   0.7   0.8   0.9

sup F1b1 W11 M sup F1b1 W11 M sup F1b1 W11 M sup F1b1 W11 M sup F1b1 W11 M
(A) 1

0  0.3
    0 .62 .34 .39 .45 .19 .22 .26 .09 .13 .17 .07 .08 .08 .05 .06

  0.3,   0 .46 .19 .21 .34 .13 .12 .19 .08 .09 .14 .06 .07 .08 .06 .06

  0.5,   0 .41 .23 .13 .29 .14 .09 .20 .10 .08 .14 .07 .06 .07 .06 .06

  0,   0.5 .47 .26 .25 .36 .17 .16 .23 .13 .12 .17 .07 .09 .07 .05 .07

  0,   −0.5 .32 .17 .47 .23 .13 .30 .17 .10 .18 .14 .09 .11 .09 .06 .07

  0.3,   0.5 .33 .18 .18 .24 .14 .12 .16 .10 .08 .11 .07 .07 .06 .05 .05

  0.3,   −0.5 .60 .47 .40 .49 .31 .28 .30 .19 .15 .22 .13 .09 .10 .07 .05

(B) 1
0  0.5

    0 .97 .85 .86 .90 .62 .62 .65 .32 .34 .38 .13 .17 .12 .05 .08

  0.3,   0 .84 .53 .52 .70 .32 .34 .46 .17 .23 .26 .07 .13 .09 .05 .07

  0.5,   0 .79 .51 .32 .63 .33 .22 .43 .20 .18 .24 .09 .10 .08 .06 .06

  0,   0.5 .84 .64 .60 .70 .45 .44 .51 .27 .32 .30 .13 .16 .11 .06 .10

  0,   −0.5 .81 .67 .95 .70 .51 .84 .57 .37 .53 .38 .22 .27 .15 .10 .11

  0.3,   0.5 .68 .47 .42 .52 .32 .29 .32 .20 .22 .21 .10 .13 .08 .06 .06

  0.3,   −0.5 .94 .91 .96 .89 .81 .86 .72 .56 .54 .50 .31 .29 .19 .11 .11

(C) 1
0  0.7

    0 1.0 .99 .99 .99 .94 .93 .91 .63 .62 .60 .25 .29 .17 .06 .10

  0.3,   0 .96 .75 .80 .89 .57 .63 .69 .32 .42 .42 .11 .22 .11 .04 .09

  0.5,   0 .93 .74 .59 .86 .55 .44 .65 .32 .30 .39 .14 .18 .11 .06 .07

  0,   0.5 .98 .83 .86 .93 .69 .73 .80 .45 .52 .56 .23 .27 .23 .07 .12

  0,   −0.5 .98 .95 1.0 .95 .90 .98 .88 .77 .86 .66 .48 .50 .24 .17 .16

  0.3,   0.5 .85 .67 .67 .71 .49 .49 .49 .32 .35 .29 .16 .20 .11 .06 .08

  0.3,   −0.5 .99 .99 1.0 .99 .98 .99 .92 .88 .87 .74 .57 .52 .26 .17 .15



Table 4.2: Empirical Power with One Break and T  240 (DGP-2)

  0.5   0.6   0.7   0.8   0.9

sup F1b1 W11 M sup F1b1 W11 M sup F1b1 W11 M sup F1b1 W11 M sup F1b1 W11 M
(A) 1

0  0.3
    0 .95 .82 .90 .83 .56 .68 .62 .32 .42 .33 .14 .20 .11 .07 .08

  0.3,   0 .89 .67 .55 .72 .42 .43 .54 .24 .29 .30 .12 .17 .10 .06 .09

  0.5,   0 .82 .55 .38 .68 .33 .31 .50 .20 .23 .28 .10 .15 .10 .07 .08

  0,   0.5 .86 .62 .57 .71 .42 .43 .54 .25 .29 .32 .13 .15 .12 .06 .07

  0,   −0.5 .73 .54 .92 .59 .38 .73 .43 .26 .49 .27 .15 .22 .16 .07 .09

  0.3,   0.5 .75 .49 .76 .59 .33 .66 .40 .20 .55 .24 .12 .41 .10 .06 .27

  0.3,   −0.5 .89 .75 .77 .80 .60 .60 .62 .40 .44 .40 .23 .18 .18 .08 .07

(B) 1
0  0.5

    0 1.0 1.0 1.0 1.0 .98 .98 .96 .82 .88 .69 .37 .50 .22 .09 .14

  0.3,   0 1.0 .96 .97 .97 .85 .86 .90 .62 .69 .60 .27 .41 .21 .07 .15

  0.5,   0 .99 .93 .85 .96 .76 .74 .86 .52 .57 .57 .24 .34 .21 .07 .16

  0,   0.5 1.0 .95 .94 .98 .82 .82 .90 .60 .67 .63 .30 .39 .28 .09 .13

  0,   −0.5 .98 .93 1.0 .95 .87 .99 .88 .76 .90 .68 .48 .55 .34 .18 .15

  0.3,   0.5 .98 .91 .84 .93 .73 .71 .78 .50 .55 .47 .24 .35 .19 .08 .14

  0.3,   −0.5 .99 .98 1.0 .99 .95 .99 .95 .85 .91 .77 .57 .59 .36 .16 .16

(C) 1
0  0.7

    0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .99 .99 .94 .71 .81 .38 .11 .24

  0.3,   0 1.0 1.0 1.0 1.0 .98 .99 .99 .89 .94 .87 .52 .70 .32 .10 .25

  0.5,   0 1.0 .99 1.0 1.0 .97 .96 .99 .81 .87 .83 .43 .60 .33 .09 .22

  0,   0.5 1.0 1.0 .99 1.0 .96 .96 .99 .84 .89 .83 .50 .61 .39 .12 .19

  0,   −0.5 1.0 .99 1.0 1.0 .99 1.0 .99 .96 .99 .92 .83 .75 .56 .37 .24

  0.3,   0.5 1.0 .99 .96 .99 .93 .90 .94 .76 .77 .72 .42 .53 .27 .09 .20

  0.3,   −0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .98 1.0 .94 .85 .87 .54 .33 .28



Table 5.1: Empirical Power with One Break (DGP-3)

  0.5   0.6   0.7   0.8   0.9

supF1a1 W11 M supF1a1 W11 M supF1a1 W11 M supF1a1 W11 M supF1a1 W11 M
(A) 1

0  0.5, T  150
1 0, 2 −. 2 1.0 1.0 .88 .97 .97 .74 .89 .89 .51 .65 .65 .28 .31 .31 .13

1 −. 3, 2 −. 5 .98 .98 .71 .90 .89 .65 .73 .73 .55 .42 .42 .40 .18 .17 .27

(B) 1
0  0.5, T  240

1 0, 2 −. 2 1.0 1.0 .94 1.0 1.0 .88 .99 .99 .73 .91 .90 .51 .55 .52 .19

1 −. 3, 2 −. 5 1.0 1.0 .79 .99 .99 .66 .97 .97 .48 .79 .78 .35 .38 .34 .21

Table 5.2: Empirical Power with One Break (DGP-4)

  0.5   0.6   0.7   0.8   0.9

supF1b1 W11 M supF1b1 W11 M supF1b1 W11 M supF1b1 W11 M supF1b1 W11 M
(A) 1

0  0.5, T  150
1 0, 2 −. 2 .82 .66 .88 .72 .50 .70 .55 .29 .43 .30 .17 .23 .12 .12 .14

1 −. 3, 2 −. 5 .60 .29 .35 .39 .15 .27 .23 .08 .19 .13 .07 .12 .05 .05 .07

(B) 1
0  0.5, T  240

1 0, 2 −. 2 .98 .91 1.0 .94 .77 1.0 .79 .54 .90 .53 .31 .57 .18 .13 .23

1 −. 3, 2 −. 5 .95 .74 .79 .81 .50 .66 .52 .21 .45 .25 .09 .26 .06 .05 .10



Table 6: Empirical Power with One Break (DGP-5)

  0.5   0.6   0.7   0.8   0.9

supF1a1 W11 M supF1a1 W11 M supF1a1 W11 M supF1a1 W11 M supF1a1 W11 M
(A) 1

0  0.5, T  150
    0 .99 .99 .90 .94 .94 .68 .76 .77 .39 .41 .40 .17 .15 .16 .09

  0.3,   0 .88 .86 .53 .75 .72 .39 .52 .49 .25 .29 .26 .14 .11 .11 .07

  0.5,   0 .89 .88 .35 .78 .75 .27 .57 .55 .19 .36 .32 .12 .14 .13 .07

  0,   0.5 .91 .89 .64 .82 .79 .48 .65 .59 .32 .38 .35 .18 .15 .14 .09

  0,   −0.5 .89 .88 .98 .81 .78 .87 .70 .62 .60 .47 .35 .28 .20 .12 .13

  0.3,   0.5 .84 .77 .44 .72 .65 .33 .52 .47 .24 .31 .27 .14 .13 .12 .07

  0.3,   −0.5 .97 .97 .97 .94 .93 .88 .83 .82 .61 .59 .56 .30 .24 .22 .13

(B) 1
0  0.5, T  240

    0 1.0 1.0 1.0 1.0 1.0 .99 .98 .98 .91 .82 .81 .53 .30 .29 .19

  0.3,   0 1.0 1.0 .98 .99 .98 .89 .93 .93 .72 .69 .68 .42 .23 .23 .17

  0.5,   0 1.0 1.0 .88 .98 .97 .77 .92 .91 .59 .69 .66 .36 .26 .23 .15

  0,   0.5 1.0 1.0 .94 .97 .97 .85 .89 .89 .70 .64 .65 .41 .25 .26 .16

  0,   −0.5 1.0 .98 1.0 1.0 .96 .99 .99 .89 .92 .94 .74 .60 .55 .37 .18

  0.3,   0.5 .99 .99 .85 .96 .95 .72 .88 .87 .58 .61 .61 .35 .25 .25 .16

  0.3,   −0.5 1.0 1.0 1.0 .99 .98 .99 .97 .94 .95 .85 .79 .64 .42 .33 .19



Table 7.1: Empirical Power with Two Breaks and T  150 (DGP-6)

  0.5   0.6   0.7   0.8   0.9

supF1a2 UD1a Wm1 M supF1a2 UD1a Wm1 M supF1a2 UD1a Wm1 M supF1a2 UD1a Wm1 M supF1a2 UD1a Wm1 M
(A) 1

0  0.3, 2
0  0.6

    0 .80 .80 .81 .40 .65 .64 .64 .22 .43 .41 .42 .14 .26 .25 .26 .08 .10 .10 .10 .05

  0.3,   0 .74 .69 .68 .18 .62 .56 .55 .12 .42 .37 .35 .08 .23 .20 .19 .07 .08 .07 .07 .05

  0.5,   0 .77 .74 .73 .13 .66 .63 .62 .09 .46 .43 .44 .07 .27 .25 .25 .07 .10 .08 .07 .04

  0,   0.5 .74 .71 .71 .25 .64 .59 .58 .17 .43 .38 .38 .12 .24 .20 .20 .09 .07 .06 .05 .06

  0,   −0.5 .56 .50 .44 .52 .44 .37 .33 .35 .30 .24 .20 .21 .17 .13 .12 .12 .06 .06 .05 .06

  0.3,   0.5 .73 .70 .71 .18 .63 .62 .62 .12 .46 .42 .42 .09 .25 .23 .23 .07 .07 .10 .07 .05

  0.3,   −0.5 .80 .79 .81 .57 .66 .63 .65 .34 .44 .40 .42 .21 .23 .21 .22 .12 .10 .09 .10 .06

(B) 1
0  0.3, 2

0  0.7
    0 .94 .94 .94 .68 .79 .78 .78 .43 .56 .54 .54 .22 .32 .31 .31 .12 .11 .10 .10 .05

  0.3,   0 .83 .80 .79 .35 .71 .65 .63 .22 .50 .45 .42 .15 .28 .23 .22 .10 .09 .07 .07 .05

  0.5,   0 .83 .82 .82 .23 .72 .69 .69 .16 .54 .52 .52 .11 .33 .31 .30 .08 .11 .09 .09 .04

  0,   0.5 .85 .81 .81 .45 .73 .70 .70 .30 .53 .47 .47 .19 .30 .26 .24 .11 .09 .07 .07 .06

  0,   −0.5 .79 .70 .66 .83 .65 .55 .51 .63 .46 .37 .34 .39 .24 .18 .18 .19 .08 .07 .07 .08

  0.3,   0.5 .81 .79 .83 .29 .70 .67 .72 .21 .52 .47 .54 .14 .31 .28 .34 .09 .11 .09 .13 .05

  0.3,   −0.5 .92 .92 .94 .86 .84 .84 .85 .63 .61 .60 .62 .38 .34 .32 .33 .19 .12 .11 .12 .09

(C) 1
0  0.4, 2

0  0.7
    0 .83 .82 .82 .37 .69 .68 .69 .24 .45 .45 .45 .12 .26 .27 .27 .08 .09 .09 .10 .05

  0.3,   0 .78 .78 .78 .20 .68 .68 .67 .13 .48 .48 .48 .09 .29 .31 .30 .07 .09 .11 .12 .04

  0.5,   0 .78 .78 .78 .12 .69 .69 .69 .10 .53 .52 .52 .07 .34 .34 .34 .06 .11 .12 .12 .04

  0,   0.5 .80 .80 .81 .25 .70 .70 .70 .18 .52 .52 .53 .12 .32 .34 .34 .07 .11 .12 .12 .05

  0,   −0.5 .62 .50 .48 .53 .45 .37 .34 .34 .31 .23 .21 .18 .18 .12 .12 .12 .06 .05 .05 .06

  0.3,   0.5 .78 .79 .79 .16 .69 .68 .68 .12 .52 .54 .54 .10 .33 .34 .35 .07 .12 .13 .13 .04

  0.3,   −0.5 .84 .84 .86 .57 .70 .69 .69 .36 .47 .45 .45 .20 .25 .24 .26 .12 .09 .09 .09 .06



Table 7.2: Empirical Power with Two Breaks and T  240 (DGP-6)

  0.5   0.6   0.7   0.8   0.9

supF1a2 UD1a Wm1 M supF1a2 UD1a Wm1 M supF1a2 UD1a Wm1 M supF1a2 UD1a Wm1 M supF1a2 UD1a Wm1 M
(A) 1

0  0.3, 2
0  0.6

    0 .96 .96 .96 .90 .89 .88 .88 .68 .73 .70 .71 .39 .43 .41 .41 .20 .16 .14 .14 .08

  0.3,   0 .94 .92 .93 .59 .84 .80 .83 .41 .69 .64 .67 .28 .42 .39 .42 .16 .13 .12 .13 .09

  0.5,   0 .92 .91 .92 .43 .84 .82 .82 .30 .70 .68 .68 .22 .47 .46 .46 .14 .16 .15 .14 .10

  0,   0.5 .92 .90 .91 .61 .84 .81 .81 .41 .66 .62 .63 .28 .41 .39 .40 .15 .14 .13 .13 .08

  0,   −0.5 .86 .85 .83 .92 .74 .73 .70 .75 .60 .58 .54 .49 .38 .38 .32 .22 .13 .13 .10 .08

  0.3,   0.5 .89 .88 .89 .48 .79 .77 .77 .35 .65 .63 .63 .26 .42 .41 .42 .14 .14 .13 .13 .09

  0.3,   −0.5 .94 .94 .95 .94 .86 .85 .86 .76 .70 .69 .71 .48 .43 .42 .43 .20 .14 .13 .13 .08

(B) 1
0  0.3, 2

0  0.7
    0 1.0 1.0 1.0 1.0 .98 .98 .98 .98 .85 .85 .85 .88 .58 .56 .56 .57 .20 .18 .18 .27

  0.3,   0 .98 .98 .98 .86 .94 .92 .94 .69 .79 .75 .78 .48 .51 .48 .51 .25 .18 .15 .17 .10

  0.5,   0 .98 .97 .97 .68 .93 .91 .92 .54 .80 .77 .77 .38 .56 .53 .53 .22 .20 .19 .19 .11

  0,   0.5 .98 .97 .98 .84 .92 .91 .91 .68 .77 .73 .74 .48 .51 .48 .49 .26 .18 .16 .17 .10

  0,   −0.5 .95 .95 .94 .99 .90 .90 .88 .95 .78 .77 .74 .77 .55 .55 .50 .38 .20 .20 .16 .13

  0.3,   0.5 .95 .95 .95 .71 .88 .87 .87 .57 .74 .73 .72 .41 .49 .48 .48 .23 .17 .17 .17 .11

  0.3,   −0.5 .99 .99 .99 1.0 .97 .97 .97 .97 .85 .85 .86 .77 .60 .60 .62 .38 .19 .19 .20 .12

(C) 1
0  0.4, 2

0  0.7
    0 .97 .97 .97 .88 .92 .91 .88 .66 .77 .75 .71 .39 .49 .48 .41 .17 .18 .19 .14 .08

  0.3,   0 .95 .93 .93 .58 .85 .83 .83 .42 .73 .69 .67 .26 .48 .43 .42 .15 .17 .15 .13 .08

  0.5,   0 .95 .94 .92 .40 .86 .84 .82 .29 .75 .73 .68 .22 .52 .50 .46 .13 .20 .19 .14 .07

  0,   0.5 .94 .93 .91 .59 .84 .81 .81 .43 .73 .71 .63 .28 .48 .45 .40 .13 .16 .16 .13 .06

  0,   −0.5 .87 .87 .83 .91 .80 .79 .70 .74 .63 .63 .54 .49 .42 .41 .32 .19 .14 .14 .10 .08

  0.3,   0.5 .92 .91 .89 .73 .82 .80 .77 .65 .71 .70 .63 .53 .48 .47 .42 .38 .17 .16 .13 .26

  0.3,   −0.5 .94 .95 .95 .93 .88 .88 .86 .75 .73 .73 .71 .46 .45 .46 .43 .18 .15 .15 .13 .08



Table 8.1: Empirical Power with Two Breaks and T  150 (DGP-7)

  0.5   0.6   0.7   0.8   0.9

supF1b2 UD1b Wm1 M supF1b2 UD1b Wm1 M supF1b2 UD1b Wm1 M supF1b2 UD1b Wm1 M supF1b2 UD1b Wm1 M
(A) 1

0  0.3, 2
0  0.6

    0 .98 .97 .87 .77 .92 .86 .69 .50 .69 .61 .47 .27 .36 .30 .22 .14 .11 .10 .08 .07

  0.3,   0 .84 .73 .62 .41 .72 .58 .49 .28 .53 .41 .37 .19 .27 .17 .17 .10 .07 .06 .06 .08

  0.5,   0 .84 .78 .69 .64 .74 .65 .58 .51 .58 .51 .46 .46 .33 .27 .24 .35 .10 .08 .09 .25

  0,   0.5 .87 .81 .66 .49 .80 .70 .53 .37 .61 .51 .39 .24 .36 .25 .17 .14 .11 .08 .07 .09

  0,   −0.5 .85 .86 .84 .85 .77 .78 .72 .61 .56 .57 .45 .41 .38 .35 .24 .19 .15 .14 .10 .09

  0.3,   0.5 .81 .75 .68 .35 .71 .63 .56 .24 .56 .50 .44 .18 .32 .26 .24 .11 .10 .08 .08 .07

  0.3,   −0.5 .98 .98 .91 .90 .97 .92 .77 .71 .83 .70 .50 .46 .50 .35 .22 .23 .16 .14 .11 .10

(B) 1
0  0.3, 2

0  0.7
    0 .96 .93 .78 .57 .86 .78 .60 .32 .62 .54 .41 .17 .36 .31 .23 .10 .13 .11 .09 .06

  0.3,   0 .82 .71 .61 .29 .71 .59 .51 .17 .52 .41 .38 .13 .31 .22 .21 .08 .10 .07 .08 .06

  0.5,   0 .84 .77 .69 .18 .74 .67 .60 .13 .57 .51 .47 .10 .37 .32 .29 .08 .12 .11 .10 .06

  0,   0.5 .84 .78 .70 .37 .77 .66 .59 .24 .58 .48 .45 .16 .37 .27 .26 .11 .13 .08 .12 .08

  0,   −0.5 .73 .78 .72 .65 .60 .65 .53 .42 .41 .41 .30 .25 .27 .25 .16 .13 .11 .10 .08 .07

  0.3,   0.5 .81 .75 .72 .25 .72 .65 .62 .16 .56 .50 .50 .12 .35 .28 .30 .08 .11 .09 .13 .05

  0.3,   −0.5 .97 .94 .80 .63 .92 .82 .61 .42 .73 .55 .34 .22 .44 .29 .15 .11 .15 .12 .07 .08

(C) 1
0  0.4, 2

0  0.7
    0 1.0 .99 .82 .77 .95 .88 .59 .52 .76 .64 .35 .28 .44 .34 .18 .15 .15 .12 .06 .08

  0.3,   0 .93 .89 .66 .43 .84 .76 .50 .29 .65 .56 .36 .20 .44 .35 .21 .11 .15 .13 .08 .07

  0.5,   0 .93 .88 .69 .27 .83 .75 .57 .21 .66 .58 .42 .15 .45 .36 .25 .09 .15 .13 .09 .07

  0,   0.5 .96 .92 .72 .52 .88 .83 .56 .37 .73 .66 .41 .26 .50 .45 .23 .14 .20 .20 .10 .10

  0,   −0.5 .87 .87 .83 1.0 .76 .78 .71 .97 .59 .58 .45 .83 .38 .35 .23 .47 .14 .14 .10 .12

  0.3,   0.5 .91 .88 .72 .35 .82 .79 .58 .25 .67 .63 .44 .19 .48 .44 .26 .11 .20 .19 .10 .07

  0.3,   −0.5 .99 .99 .91 .91 .96 .92 .72 .74 .83 .70 .41 .46 .53 .38 .19 .23 .17 .15 .09 .10



Table 8.2: Empirical Power with Two Breaks and T  240 (DGP-7)

  0.5   0.6   0.7   0.8   0.9

supF1b2 UD1b Wm1 M supF1b2 UD1b Wm1 M supF1b2 UD1b Wm1 M supF1b2 UD1b Wm1 M supF1b2 UD1b Wm1 M
(A) 1

0  0.3, 2
0  0.6

    0 1.0 1.0 1.0 1.0 1.0 1.0 .96 .95 .98 .96 .81 .75 .83 .71 .50 .40 .29 .21 .18 .13

  0.3,   0 1.0 .99 .95 .92 .98 .94 .81 .78 .93 .85 .69 .56 .75 .59 .46 .32 .27 .18 .16 .14

  0.5,   0 1.0 .99 .94 .73 .98 .94 .82 .60 .93 .85 .71 .45 .75 .61 .51 .28 .29 .21 .19 .12

  0,   0.5 1.0 .98 .90 .91 .97 .93 .78 .79 .90 .82 .64 .57 .70 .59 .43 .30 .29 .19 .15 .12

  0,   −0.5 1.0 .99 .97 1.0 .99 .95 .91 .97 .97 .88 .78 .82 .82 .60 .48 .45 .38 .18 .16 .12

  0.3,   0.5 .99 .97 .87 .78 .96 .90 .75 .66 .88 .78 .64 .50 .66 .55 .43 .29 .28 .18 .16 .12

  0.3,   −0.5 1.0 1.0 .99 1.0 1.0 .99 .97 .98 .98 .97 .89 .82 .88 .75 .58 .46 .37 .23 .17 .13

(B) 1
0  0.3, 2

0  0.7
    0 1.0 1.0 .98 1.0 1.0 .98 .86 .97 .95 .89 .66 .83 .75 .60 .41 .53 .29 .21 .18 .22

  0.3,   0 .99 .98 .89 .76 .96 .90 .73 .60 .90 .77 .60 .41 .69 .54 .41 .23 .29 .19 .18 .10

  0.5,   0 .99 .98 .89 .55 .96 .89 .74 .43 .90 .78 .65 .32 .70 .58 .47 .20 .30 .22 .19 .09

  0,   0.5 .99 .97 .86 .77 .96 .89 .71 .60 .87 .75 .58 .41 .66 .54 .40 .22 .29 .20 .15 .09

  0,   −0.5 .98 .94 .88 .99 .95 .87 .76 .90 .90 .76 .60 .63 .71 .46 .38 .31 .29 .15 .12 .09

  0.3,   0.5 .98 .94 .84 .66 .93 .85 .71 .50 .83 .72 .59 .37 .64 .53 .42 .20 .30 .22 .18 .10

  0.3,   −0.5 1.0 .99 .98 .99 .98 .97 .91 .89 .96 .89 .74 .63 .80 .64 .43 .32 .31 .19 .12 .09

(C) 1
0  0.4, 2

0  0.7
    0 1.0 1.0 1.0 1.0 1.0 1.0 .93 .97 .98 .95 .70 .79 .80 .67 .39 .44 .30 .20 .14 .14

  0.3,   0 1.0 1.0 .93 .92 .99 .96 .81 .79 .94 .96 .62 .60 .71 .58 .38 .37 .28 .18 .16 .14

  0.5,   0 1.0 1.0 .90 .77 .98 .95 .79 .62 .94 .83 .64 .49 .71 .61 .44 .31 .31 .21 .17 .13

  0,   0.5 1.0 .98 .91 .91 .98 .94 .80 .76 .90 .81 .64 .61 .69 .56 .41 .35 .29 .19 .17 .12

  0,   −0.5 .99 .98 .95 1.0 .99 .96 .90 .97 .96 .86 .72 .83 .80 .58 .41 .47 .36 .19 .15 .12

  0.3,   0.5 .99 .98 .86 .96 .97 .94 .75 .89 .91 .83 .61 .82 .69 .61 .41 .63 .31 .26 .18 .35

  0.3,   −0.5 1.0 1.0 .99 1.0 1.0 .99 .96 .98 .98 .96 .85 .84 .86 .75 .49 .48 .37 .25 .15 .13



Table 9.1: Empirical Power with Two Breaks (DGP-8)

  0.5   0.6   0.7   0.8   0.9

supF1a2 UD1a Wm1 M supF1a2 UD1a Wm1 M supF1a2 UD1a Wm1 M supF1a2 UD1a Wm1 M supF1a2 UD1a Wm1 M
(A) 1

0  0.3, 1
0  0.6, T  150

1 0, 2 −. 2 .94 .94 .94 .61 .85 .84 .85 .46 .70 .69 .69 .27 .44 .42 .42 .16 .20 .20 .19 .09

1 −. 3, 2 −. 5 .95 .94 .94 .52 .84 .84 .85 .49 .69 .68 .69 .36 .51 .52 .53 .27 .29 .29 .32 .20

(B) 1
0  0.3, 1

0  0.6, T  240
1 0, 2 −. 2 .99 .99 1.0 .74 .98 .97 .97 .66 .88 .87 .88 .49 .69 .65 .66 .29 .31 .30 .30 .13

1 −. 3, 2 −. 5 .99 1.0 1.0 .46 .97 .97 .97 .37 .85 .84 .85 .32 .65 .63 .64 .23 .34 .33 .34 .17

Table 9.2: Empirical Power with Two Breaks (DGP-9)

  0.5   0.6   0.7   0.8   0.9

supF1b2 UD1b Wm1 M supF1b2 UD1b Wm1 M supF1b2 UD1b Wm1 M supF1b2 UD1b Wm1 M supF1b2 UD1b Wm1 M
(A) 1

0  0.3, 1
0  0.6, T  150

1 0, 2 −. 2 .96 .95 .83 .79 .86 .84 .65 .56 .64 .57 .41 .36 .30 .32 .24 .22 .09 .14 .14 .12

1 −. 3, 2 −. 5 .79 .82 .65 .77 .69 .73 .52 .63 .51 .58 .40 .51 .34 .45 .33 .36 .14 .29 .26 .24

(B) 1
0  0.3, 1

0  0.6, T  240
1 0, 2 −. 2 1.0 1.0 .98 1.0 .99 .98 .91 .97 .96 .92 .75 .79 .73 .63 .42 .49 .21 .22 .19 .21

1 −. 3, 2 −. 5 .99 .96 .75 .99 .94 .88 .59 .96 .80 .75 .50 .84 .50 .49 .31 .54 .19 .33 .22 .29



Table 10: Empirical Power with Two Breaks (DGP-10)

  0.5   0.6   0.7   0.8   0.9

supF1a2 UD1a Wm1 M supF1a2 UD1a Wm1 M supF1a2 UD1a Wm1 M supF1a2 UD1a Wm1 M supF1a2 UD1a Wm1 M
(A) 1

0  0.3, 2
0  0.6, T  150

    0 .64 .64 .66 .54 .46 .44 .45 .33 .28 .27 .28 .22 .15 .15 .16 .12 .07 .08 .08 .06

  0.3,   0 .48 .40 .37 .27 .33 .25 .24 .19 .19 .15 .15 .14 .10 .08 .07 .12 .06 .06 .06 .06

  0.5,   0 .44 .38 .39 .19 .31 .27 .27 .14 .20 .17 .18 .11 .10 .09 .10 .10 .07 .06 .06 .06

  0,   0.5 .51 .45 .44 .33 .37 .32 .32 .26 .23 .20 .21 .20 .13 .11 .12 .13 .08 .06 .06 .08

  0,   −0.5 .46 .45 .41 .68 .31 .32 .31 .48 .25 .25 .24 .31 .16 .17 .16 .17 .08 .08 .08 .08

  0.3,   0.5 .41 .39 .39 .25 .29 .28 .29 .17 .21 .18 .19 .16 .10 .09 .10 .11 .08 .07 .07 .06

  0.3,   −0.5 .90 .90 .74 .73 .81 .81 .58 .51 .62 .63 .39 .32 .38 .38 .24 .19 .16 .15 .11 .09

(B) 1
0  0.3, 2

0  0.6, T  240
    0 .95 .95 .95 .96 .82 .79 .81 .84 .60 .57 .58 .56 .28 .25 .26 .30 .10 .09 .09 .13

  0.3,   0 .86 .82 .85 .74 .68 .62 .67 .55 .46 .41 .46 .39 .23 .18 .21 .24 .09 .07 .09 .13

  0.5,   0 .93 1.0 .77 .55 .86 .98 .59 .43 .69 .90 .41 .32 .43 .59 .21 .21 .14 .17 .09 .12

  0,   0.5 .83 .80 .81 .73 .67 .63 .64 .54 .46 .41 .42 .40 .24 .20 .22 .23 .10 .09 .10 .11

  0,   −0.5 .79 .79 .74 .97 .65 .65 .59 .87 .49 .48 .45 .65 .27 .29 .26 .33 .15 .14 .12 .12

  0.3,   0.5 .71 .68 .68 .59 .54 .51 .52 .46 .37 .34 .34 .36 .19 .17 .17 .23 .08 .08 .08 .13

  0.3,   −0.5 .90 .90 .92 .98 .81 .81 .83 .88 .62 .63 .65 .65 .38 .38 .41 .32 .16 .15 .17 .13


