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ABSTRACT

In this paper, we characterize the convex hull of a set, which does not change when variables are
permuted, as a projection of a set in a higher-dimensional space. In particular, we show that as long
as the set can be convexified after imposing an ordering on the constituent variables, the convex hull
of the set can be written using a polynomial number of additional variables and constraints. Then,
we explore applications of this result in a variety of contexts. We first study permutation-invariant
norm balls intersected by a cardinality constraint. The convex hull can be seen as another norm
ball and we provide an explicit formula that calculates values of the norm. Furthermore, we present
how to separate an arbitrary point from the convex hull. Then, this idea is used to construct an
extended formulation for the feasible set of the sparse principal component analysis [11] and present
an alternative proof of the formula for K-support norm [1]. This idea can be extended to sets of
matrices that are invariant under permutation of singular values. Using the conjugacy result by [19],
we show that the convex hull of the set is directly obtained by the convex hull of its correspondence
in the vector space. As a special case, we recover the proof of the convex hull result by [15]. We then
generalize the result in the context of hyperbolic programming. Furthermore, we show a convex hull
result and the semidefinite representability of rank-constrained permutation-invariant sets of matrices.
We next use our convexification result to construct convex/concave envelops of permutation-invariant
nonlinear functions over a symmetric box. At last, we study sets that are written by certain logical
constraints or cardinality constraints. Another application is on sets of rank-one matrices where
the generating vectors of the matrices are in a permutation-invariant set. We provide a variety of
valid inequalities for the convex hull in a higher dimensional space. As a motivating example, we
provide tight SDP relaxation for the sparse principal component analysis and present computational
experiments, from which we show that our formulation reduces more than 90% of gaps generated by
the baseline formulation by [11].

Keywords Convexification · permutation-invariant sets · majorization

1 Introduction

In this paper, we study the convex hull of permutation-invariant sets. A set S ⊆ Rn is permutation-invariant if x ∈ S
implies that Px ∈ S for all n-dimensional permutation matrices P . A more general formal definition is presented in
Section 2.

Permutation-invariant sets appear in a variety of optimization problems. Sparse principal component analysis is to find
a sparse vector that explains the most variance of the data. The problem to find the first sparse principal component is
formulated in [11] as max{xᵀΣx | card(x) ≤ K, ‖x‖ ≤ 1} where Σ is the covariance matrix of the given data. The
feasible set of the formulation is permutation-invariant because the values of the cardinality and the l2-norm are invariant
under permutations. The convex hull of the feasible set is also known as a norm ball associated with the K-support
norm [1] in the machine learning community, which is used to construct tighter relaxation for a sparsity set than the
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elastic net. Important sets of matrices are often represented solely in their singular values (or eigenvalues). Perhaps, one
of the simplest of such sets in the context of a graph-invariance, as discussed in [10], is {X ∈ Sn | λ(X) = y} where
Sn is the set of n× n symmetric matrices and λ(X) is the vector of eigenvalues sorted in descending order and y is a
vector of constants. In [15], the authors studied the set of the form {M ∈ Mm,n(R) | rank(M) ≤ K, ‖M‖sp ≤ r}
whereMm,n(R) is the set of m × n real matrices and ‖M‖sp is the spectral norm of M . The elements of the set
are characterized by their spectral values because the rank of a matrix equals the cardinality of the vector of spectral
values and the spectral norm of matrix equals the largest spectral value of the matrix. In nonlinear optimization,
characterizing or approximating the convex envelope of a multilinear function

∏n
i=1 xi over a symmetric box [a, b]n is

an important tool in global optimization. The convex envelope of the function corresponds to the convex hull of its
epigraph over [a, b]n and the epigraph {(x, y) ∈ Rn ×R |

∏n
i=1 xi ≤ y, x ∈ [a, b]n} is permutation-invariant with

respect to x ∈ Rn. In the convex of stochastic ordering, [12] studied the convex hull of the permutation-invariant set
{x ∈ Rn | y[i] ≥ x[i], i = 1, . . . , n} for a fixed vector y ∈ Rn where x[i] represents the ith largest component of an
arbitrary vector x. Another classic example presented in [24] is the set {x ∈ {0, 1}n |

∑n
i=1 xi ∈ S} and its convex

hull where S is a subset of {1, . . . , n}.
A permutation-invariant set can be represented as a disjunctive set because it can be seen as a union of n! sets of
the form S ∩ {x | xπ(1) ≥ · · · ≥ xπ(n)} where π is an n-dimensional permutation. It is often observed that each
set S ∩ {x | xπ(1) ≥ · · · ≥ xπ(n)} has polyhedral or polynomial description while S does not. When each set
S ∩ {x | xπ(1) ≥ · · · ≥ xπ(n)} is a polyhedron, an extended formulation for the convex hull of S can be obtained using
disjunctive program [2, 3], which obvious is unfavorable because of its excessively high dimensionality. In this paper,
we provide an explicit polynomially sized extended formulation for the convex hull of permutation-invariant sets without
using disjunctive programming. The outline of the construction is as follows: we first take a permutation-invariant set
S and assume that the convex hull conv(S ∩∆) can be easily constructed where ∆ := {x ∈ Rn | x1 ≥ · · · ≥ xn}.
Then, the convex hull is simply the union of permutahedra where each permutahedron is generated by a point in
conv(S ∩∆). We model each permutahedron using polynomially many linear equalities and inequalities and obtain an
extended formulation for conv(S) using the notion of majorization and convexity and linear representability of sum
of j largest entries of a variable. Similar construction can be employed for sign-invariant sets and the convex hull
results are summarized in Theorem 2.7. We then show how the results can be applied to recover or improve existing
convexification or relaxation results.

The remainder of the paper is organized as follows. The main convexification results for permutation- and/or sign-
invariant sets are presented in Section 2. Then, we explore various applications of the results in the following sections.
In Section 3, we study cardinality-constrained permutation-invariant norm balls and their convex hulls. The resulting
convex hull can be seen as a norm ball and we provide explicit formula that calculates the values of the norm, so that
it is easy to determine whether an arbitrary point is in the convex hull or not. Furthermore, we provide separation
inequalities for an arbitrary point. Some special cases of this class of sets are also presented. In particular, we study
the connection between permutation-invariant sets and sets of matrices characterized only by their singular values.
Furthermore, we present semidefinite-representability of rank-constrained sets of matrices. (Outline for the multilinear
section needs to be added.) (Outline for the logical constraint section needs to be added.) In Section 7, we study the
set of rank-one matrices whose generating vectors lie in a permutation-invariant set. We next construct semidefinite
programming relaxations of the convex hull by proposing various valid inequalities derived from the rank-one condition
of the matrix and the majorization inequalities. We then report results of computational experiments on sparse principal
component analysis to see how tight our relaxation is compared to the classic baseline relaxation proposed by [11].

2 Main Result

In this section, we show that the convex hulls of permutation-invariant and sign-invariant sets can be readily constructed
if their convex hulls over a fundamental sub-domain are known. We next provide definitions for these properties.

For a positive integer k, we denote the set of k-by-k permutation matrices by Pk. Given a positive integer n and a
nonnegative integer p, a set S ⊆ {(x, z) ∈ Rn ×Rp} is called permutation-invariant with respect to x if (x, z) ∈ S
implies that (Px, z) ∈ S for all permutation matrices P ∈ Pn. A function f(x, z) : Rn×Rp 7→ R is called permutation-
invariant with respect to x if f(x, z) = f(Px, z) for all permutation matrices P ∈ Pn. Any permutation-invariant set
S can be written as a sublevel set S = {(x, z) : f(x, z) ≤ 1} of a permutation-invariant function f .

A set S ⊆ {(x, z) ∈ Rn ×Rp} where n is a positive integer and p is a nonnegative integer is called sign-invariant
with respect to x if (x, z) ∈ S implies that (x̄, z) ∈ S for all x̄ that satisfy |x̄| = |x|.
Lemma 2.1 gives an important property of the convex hull of sets that are closed under certain linear transformations of
the coordinates of their elements.

2
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Lemma 2.1. Let T ∈ Rn×n and let S ⊆ {(x, z) ∈ Rn ×Rp} be such that for each (x, z) ∈ S, (Tx, z) ∈ S as well.
Then, if (x, z) ∈ conv(S), (Tx, z) ∈ conv(S).

Proof. An arbitrary (x, z) ∈ conv(S) can be written as a convex combination (x, z) =
∑
i λi(x

i, zi) where λi ≥ 0 for
all i,

∑
i λi = 1, and (xi, zi) ∈ S for all i. Then, (Tx, z) =

∑
i λi(Tx

i, zi). Observe that (Txi, zi) ∈ S because of
the assumed property for S. Therefore, (Tx, z) ∈ conv(S).

It follows easily from Lemma 2.1 that if S is permutation-invariant (resp. sign-invariant) that conv(S) is also
permutation-invariant (resp. sign-invariant).

For each x ∈ Rn, we denote the ith largest component of x by x[i] for i = 1, . . . , n. Given two vectors x, y ∈ Rn, we
say that x majorizes y, a property we denote by x ≥m y, if

1.
j∑
i=1

x[i] ≥
j∑
i=1

y[i] for j = 1, . . . , n, and

2.
n∑
i=1

x[i] =

n∑
i=1

y[i].

The result of Lemma 2.2 relates majorization and permutation. Its proof follows directly by combining the result of
Hardy, Littlewood, and Pólya’s theorem with that of Birkhoff’s theorem; see 2.B.2 and 2.A.2 of [22] for descriptions.
Lemma 2.2. If x ≥m y then y is a convex combination of x and its permutations.

We say that x weakly majorizes y from below if

j∑
i=1

x[i] ≥
j∑
i=1

y[i], ∀j = 1, . . . , n.

We denote this relation by x ≥wm y. Similarly, we say that x weakly majorizes y from above if
n∑
i=j

x[i] ≤
n∑
i=j

y[i], ∀j = 1, . . . , n

and denote this relation by x ≥wm y.
Lemma 2.3. Let K be a convex subset of Rn ×Rp. Then the set

Y :=

{
(x, u, z) ∈ Rn ×Rn ×Rp

∣∣∣∣∣ (u, z) ∈ K,
u ≥m x,
u1 ≥ · · · ≥ un

}
is convex.

Proof. First, observe that
∑j
i=1 u[i] =

∑j
i=1 ui since u1 ≥ · · · ≥ un. Further,

∑j
i=1 x[i] is a convex function being

the maximum of all possible sums of j elements chosen from x. Next,
∑n
i=1 x[i] =

∑n
i=1 xi and is, therefore, linear.

Therefore, Y has the following convex representation:

Y =

(x, u, z) ∈ Rn ×Rn ×Rp

∣∣∣∣∣∣∣
(u, z) ∈ K,∑j
i=1 ui ≥

∑j
i=1 x[i], for j = 1, . . . , n− 1,∑n

i=1 ui =
∑n
i=1 xi,

u1 ≥ · · · ≥ un

 .

Theorem 2.4. Suppose S ⊆ {(x, z) | Rn ×Rp} is permutation-invariant with respect to x ∈ Rn. Then,

conv(S) = X :=

{
(x, z)

∣∣∣∣ (u, z) ∈ conv(S0),
u ≥m x

}
, (1)

where S0 is any set that satisfies:

conv(S) ∩ {(u, z) | u1 ≥ · · · ≥ un} ⊇ S0 ⊇ S ∩ {(u, z) | u1 ≥ · · · ≥ un}.

3
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Proof. The convexity of X follows from Lemma 2.3 because conv(S0) ⊆ conv(S) ∩ {(u, z) : u1 ≥ · · · ≥ un}
implies that X satisfies u1 ≥ · · · ≥ un. We now show that S ⊆ X . As X is convex, this will also show that
conv(S) ⊆ X . Consider an arbitrary (x, z) ∈ S and define u as ui = x[i] for i = 1, . . . , n. Then, (u, z) ∈ S0 because
S is permutation-invariant and u is in descending order. Since u ≥m x, (x, z) ∈ X .

We next show that X ⊆ conv(S). Let (x, z) ∈ X . We show that it can be expressed as a convex combination of
points in S. Since (x, z) ∈ X , there exists u such that (u, z) ∈ conv(S0) ⊆ conv(S) and u ≥m x. It follows from
the permutation-invariance of S with respect to x and Lemma 2.1 that conv(S) is permutation-invariant in x. Now,
we show that (x, z) ∈ conv(S) by expressing (x, z) as a convex combination of points (Piu, z) for some permutation
matrices Pi. The result follows since (Piu, z) ∈ conv(S) by permutation-invariance of conv(S) with respect to u. To
express (x, z) as a convex combination, observe that u ≥m x implies that there exists a doubly stochastic matrix Π
such that x = Πu. By Birkhoff’s theorem [8], we can write any doubly stochastic matrix as a convex combination of
permutation matrices. Hence

(x, z) = (Πu, z) =

((∑
i

λiPi

)
u, z

)
=
∑
i

λi (Piu, z) ,

where Pi are permutation matrices, λi ≥ 0 for all i, and
∑
i λi = 1.

Theorem 2.4 gives an explicit description of the convex hull of a permutation-invariant set when an explicit description
of the convex hull of its intersection with the cone x1 ≥ · · · ≥ xn is available. In order for this explicit description to
be useful, we make use of well-known ways to formulate the condition; see Section 3.3.4 of [25] for instance.

A natural way to model the convex function
∑j
i=1 x[i] is to express it as the value function of an optimization problem.

Given j ∈ {1, . . . , n− 1} and real numbers x1, . . . , xn, consider the optimization problem
max

∑n
i=1 xisi

s.t.
∑n
i=1 si = j,

0 ≤ si ≤ 1, i = 1, . . . , n.
(2)

Formulation (2) is not directly amenable to inclusion in the result of Theorem 2.4. However, we intend to formulate that∑j
i=1 ui ≥

∑n
i=1 xisi for all si in a polytope. The natural way to model this problem is to take the dual of (2) which

converts the “for-all” quantifier to “there-exists” quantifier. We include the dual formulation below:
LS(j) : min jr +

∑n
i=1 ti

s.t. xi ≤ ti + r, i = 1, . . . , n,
ti ≥ 0, i = 1, . . . , n.

(3)

Since (2) is clearly feasible, (3) exhibits no duality gap and also models
∑j
i=1 x[i]. Then, the constraint

∑j
i=1 ui ≥∑j

i=1 x[i] can be expressed as the requirement that there exists an (r, t) satisfying the feasibility constraints of (3) such
that

∑j
i=1 ui ≥ jr +

∑n
i=1 ti.

Theorem 2.5. Suppose S ⊆ {(x, z) : Rn × Rp} is permutation-invariant with respect to x. Then,

conv(S) =


(x, z)

∣∣∣∣∣∣∣∣∣∣∣∣

(u, z) ∈ conv(S0),
u1 ≥ · · · ≥ un,∑n
i=1 ui =

∑n
i=1 xi,∑j

i=1 ui ≥ jrj +
∑n
i=1 t

j
i , j = 1, . . . , n− 1,

xi ≤ tji + rj , j = 1, . . . , n− 1, i = 1, . . . , n,

tji ≥ 0, j = 1, . . . , n− 1, i = 1, . . . , n,


. (4)

We next present a similar convexification result for sign-invariant sets.
Theorem 2.6. Suppose S ⊆ {(x, z) ∈ Rn ×Rp} is sign-invariant with respect to x. Then,

conv(S) = X := {(x, z) | (u, z) ∈ conv(S0), u ≥ |x|} (5)
where S0 = S ∩

(
R
n
+ ×Rp

)
.

Proof. It is clear that X is convex because it is the projection of an intersection of two convex sets. We now
show that S ⊆ X . For an arbitrary (x, z) ∈ S, define u = |x|. By sign-invariance of S, (u, z) ∈ S and hence
(u, z) ∈ S0 ⊆ conv(S0) and, by definition, u satisfies u ≥ |x|.
We next show that X ⊆ conv(S). Let (x, z) ∈ X . Then, there exists u ∈ Rn such that (u, z) ∈ conv(S0) ⊆ conv(S)
and u ≥ |x|. Since conv(S) is sign-invariant by Lemma 2.1, it follows that {(x̄, z) | x̄i ∈ {ui,−ui}} ⊆ conv(S).
Therefore, (x, z) ∈ {(x̄, z) | |x̄i| ≤ ui} ⊆ conv(S), where the containment follows from the convexity of conv(S).

4
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The above convexification results can be easily extended to the sets which are permutation-invariant or/and sign-invariant
with respect to multiple sets of variables. For each positive integer n, let ∆n = {u ∈ Rn |u1 ≥ · · · ≥ un}.
Theorem 2.7. Let S ⊆ {(x1, . . . , xm, z) ∈ Rn1 × · · · ×Rnm ×Rp}.

1. Suppose S is a permutation-invariant set with respect to xk for all k = 1, . . . ,m. Then,

conv(S) =

{
(x1, . . . , xm, z)

∣∣∣∣ (u1, . . . , um, z) ∈ conv(S0),
uk ≥m xk, k = 1, . . . ,m

}
(6)

where S0 = S ∩ (∆n1 × · · · ×∆nm ×Rp).

2. Suppose S is sign-invariant with respect to xk for all k = 1, . . . ,m. Then,

conv(S) =

{
(x1, . . . , xm, z)

∣∣∣∣ (u1, . . . , um, z) ∈ conv(S0),
uk ≥ |xk|, k = 1, . . . ,m

}
(7)

where S0 = S ∩
(
R
n1
+ × · · · ×R

nm
+ ×Rp

)
.

3. Suppose S is permutation-invariant and sign-invariant with respect to xk for all k = 1, . . . ,m. Then,

conv(S) =

{
(x1, . . . , xm, z)

∣∣∣∣ (u1, . . . , um, z) ∈ conv(S0),
uk ≥m |xk|, k = 1, . . . ,m

}
(8)

where
S0 = S ∩

{
(u1, . . . , um, z) | uk1 ≥ · · · ≥ uknk ≥ 0, k = 1, . . . ,m

}
.

The results above can be generalized significantly. For a set C, we denote the convex hull of {Ti1u, . . . , Tiku},
for u ∈ C as Ti(u), where Tij ∈ Rn×n. Assume that C ⊆ T1(C) ⊆ · · · ⊆ Tr ◦ · · · ◦ T1(C) = S. Since each
matrix is a constant matrix, the convex hull of matrices at any level can be written as the affine transform of a k-
dimensional simplex with each Tij as an extreme point. We denote the affine transform Mi = conv(Ti1, . . . , Tik). Let
Xi = {Tiu | Ti ∈Mi, u ∈ V }. Then, it follows by commutativity of convexification with affine transformation that
conv(Xi) = Ti(V ). Being a collection of disjoint bilinear functions, the convex hull is determined by the extreme points
of Mi. The convex hull of the set Xi can be obtained using the reformulation-linearization technique. Assume, V is
expressed as Au ≤ b. Then, we write U as the linearization of uλT . We obtain AU ≤ bλT , Ue = u, x =

∑k
j=1 TijUj ,

λT e = 1, and λ ≥ 0, where Uj is the jth column of U . This can also be obtained using disjunctive programming on the
set of points (u, Tiju) for j ∈ {1, . . . , k}. Observe that the number of inequalities is approximately km+2n+k+1 and
the number of variables is n× (k + 1) + k, where A ∈ Rm×n. It follows that, for a fixed k and r, repeated application
of the procedure r times, leads to a polynomial sized formulation. More importantly, if each Tij = Qi +Rij , where
Rij has a fixed rank lij and m is a fixed, then by working with the column space of Rij we can limit the number of
variables to

∑k
j=1 lij , a fixed quantity. In this case, the step adds a fixed number of variables and constraints. Therefore,

r steps, where r is bounded by a polynomial, leads to a polynomial sized formulation. As an example, consider the
scheme where we construct the convex hull of (u1, u2, u1, u2) and then (u1, u2, u2, u1), where u1 ≥ u2. Then, we
obtain

U11 + U12 = u1

U21 + U22 = u2

U11 + U21 = x1

U12 + U22 = x2

U11 ≥ U22

U12 ≥ U21

We show that the above system projects to u1 ≥ x1, u1 ≥ x2, u1 + u2 = x1 + x2. The validity of these inequalities
follows easily from the above constraints. Consider any (u1, u2, x1, x2) satisfying the latter inequalites, Assume without
loss of generality that x1 ≥ x2. Then, we can define U11 = x1, U12 = u1− x1 = x2− u2, u21 = 0, and u22 = u2 and
check that these variables satisfy the system defined above. Similarly, if x1 ≤ x2, we let U11 = x1 − u2 = u1 − x2,
U12 = x2, U21 = u2, and U22 = 0. The projected inequalities are precisely the ones used in [13] at each stage.
Since permutations are possible using an O(n log n) sorting network, the author obtains a compact formulation of the
permutahedron which can be used to represent the majorization constraints. Similarly, [18] considers the special case
where each Tij describes a reflection relationship. In particular, by adding an additional variable, we can write the
reflection about any plane as a reflection about a plane passing through the origin. Assume this plane is 〈a, v〉 = 0

5
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and a is a unit vector. Then, it follows that any point v may be written as: v − 〈a, v〉a+ 〈v, a〉a and its reflection as
v − 2〈a, u〉a. Using this transformation, it suffices to consider in the above example, a single variable u representing
〈a, v〉 with the constraint u ≥ 0 and the transformation consists of the matrix [1] and [−1]. Then, we have

U1 + U2 = u

U1 − U2 = x

U1 ≥ 0

U2 ≥ 0

Indeed, the set can be projected to −u ≤ x ≤ u, and u ≥ 0. The validity of these constraints follows easily. Moreover,
for a given (u, x), we can set U1 = u+x

2 and U2 = u−x
2 to satisfy the above equations. As pointed out by [18], the

previous example can also be seen as a reflection by considering reflection about u1−u2 = 0. When Tij are symmetric,
the constraints for the set V can often be obtained by imposing constraints using eigenvectors of Ti1, . . . , Tik which
have negative eigenvalues. In particular, if Λij is the matrix with columns being the eigenvectors of Tij , and Λij is of
full rank, we can require that [Λ−1

ij u]t ≥ 0 for each t such that the eigenvalue corresponding to the tth column of Λij is
negative. This is because repeated applications of T switches the sign of these entries in Λ−1

ij u. The advantage is that at
each stage these constraints can be used to restrict S simplifying the initial convex hull construction.

3 Sparsity theorem

In this section, we study the convex hull of the following set

NK
‖·‖s = {x ∈ Rn | ‖x‖s ≤ 1, card(x) ≤ K}, (9)

where ‖ · ‖s is a sign- and permutation-invariant norm (also known as a symmetric gauge function). When K = 1, the
convex hull is the well-known l1-norm ball and hence we assume 1 < K ≤ n. When the associated norm ‖ · ‖s is the
l2-norm, NK

‖·‖ is the feasible set of the sparse principal component analysis problem (sPCA); see [11].

For notational simplicity, we define ∆ := ∆n ∩ Rn+ and, for any vector x ∈ Rn, define x∆ as (x∆)i = |x|[i] for
i = 1, . . . , n.

By sign- and permutation-invariance of the norm ‖ · ‖s and the cardinality constraint, NK
‖·‖s is sign- and permutation-

invariant and hence we can apply Theorem 2.7 to obtain its convex hull as a projection of a higher dimensional set as
follows:

conv
(
NK
‖·‖s

)
=

{
x ∈ Rn

∣∣∣∣ u ∈ NK
‖·‖s ∩∆,

u ≥m |x|

}
=

x ∈ Rn
∣∣∣∣∣∣∣
‖u‖s ≤ 1,
u1 ≥ · · · ≥ uK ≥ 0,
uK+1 = · · · = un = 0,
u ≥m |x|

 . (10)

The extended formulation (10) can be written in a closed form with O(nK) additional variables and constraints based
on the modeling technique that we described in Section 2; see formulations (2) and (3) for modeling details. Other
forms of extended formulations are proposed in [20] and [21] when ‖ · ‖s is an lp norm. In their papers, two approaches
are used to develop the formulations: (i) a dynamic programming concepts and (ii) Goemans’ extended formulation for
the permutahedron using a sorting network [13].

In this section, we represent the convex hull as a norm ball in the original variable space. The induced norm is easily
calculable if the associated norm ‖ · ‖s is calculable. Moreover, we provide a separating hyperplane for an arbitrary
point in Rn.
Lemma 3.1. Suppose x ≥m y. Then, for any permutation-invariant seminorm f(·), f(x) ≥ f(y).

Proof. By Lemma 2.2, we can write y =
∑
i λiP

ix where λi ≥ 0,
∑
i λi = 1, and P i are permutation matrices.

Therefore, f(y) = f
(∑

i λiP
ix
)
≤
∑
i f(λiP

ix) =
∑
i λif(P ix) =

∑
i λif(x) = f(x) where the inequality

follows from the triangle inequality for the seminorm f and the second and the third equalities follow from the positive
homogeneity and permutation-invariance of f , respectively.

A set in Rn is called a convex body if it is a compact convex set with non-empty interior. In the next proposition, we
show that conv(NK

‖·‖s) is a convex body.

Theorem 3.1. conv(NK
‖·‖s) is a convex body.

6
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Proof. Convexity of the set is obvious. We first show that conv(NK
‖·‖s) is compact. LetX be the set of (u, x) ∈ Rn×Rn

that satisfy the conditions of the last set in (10). Since each condition in X forms a closed set, X is an intersection of
closed sets, showing the closedness of X . Since (Rn, ‖ · ‖s) is a finite-dimensional normed vector space, the norm ball
{u ∈ Rn | ‖u‖s ≤ 1} is compact. Let M be such that ‖u‖ ≤M for all u in the norm ball. Recall that |x| is a convex
combination of some u and its permutations and let ux be such u. Then, by Lemma 3.1, ‖x‖ ≤ ‖ux‖. Therefore, for
each (u, x) ∈ X , ‖(u, x)‖ ≤ ‖u‖+ ‖x‖ ≤ ‖u‖+ ‖ux‖ ≤ 2M , showing that X is bounded. Finally, conv(NK

‖·‖s) is
compact because it is a projection of a compact set.

We next show that conv(NK
‖·‖s) has a non-empty interior. Observe that εe1 ∈ conv(NK

‖·‖s) for a sufficiently small ε > 0

because (εe1, εe1) ∈ X . By sign- and permutation-invariance of conv(NK
‖·‖s), any sign- and permutation-invariants of

εe1 are included in the convex hull. This shows that {x | ‖x‖1 ≤ ε} ⊆ conv(NK
‖·‖s). Since 0 is an interior point of the

l1-norm ball, it is also an interior point of conv(NK
‖·‖s).

It is well-known that there exists an explicit one-to-one correspondence between norms in Rn and compact convex
bodies symmetric about 0 and containing 0 in their interior; see [23], for example. In particular, an arbitrary norm can
be matched to its unit ball. Conversely, any given compact convex body C symmetric about 0 and containing 0 in its
interior can be assigned to the norm:

fC(x) := min
{
t > 0

∣∣∣ x
t
∈ C

}
.

It is known that the function fC satisfies the properties of norms and that the convex body C is a sublevel set of fC , that
is, C = {x | fC(x) ≤ 1}.
Since the set conv(NK

‖·‖s) is a compact convex body symmetric about 0 and containing 0 in its interior, we can define a
norm associated with conv(NK

‖·‖s). We denote the norm by ‖ · ‖c. Note that ‖ · ‖c is sign- and permutation-invariant.

Theorem 3.2. conv(NK
‖·‖s) = {x ∈ Rn | ‖x‖c ≤ 1}.

Theorem 3.3. If card(x) ≤ K, ‖x‖c = ‖x‖s.

Proof. By sign- and permutation-invariance of ‖·‖c and ‖·‖s, ‖x‖c = ‖x∆‖c and ‖x‖s = ‖x∆‖s. Therefore, it suffices
to show that ‖x∆‖c = ‖x∆‖s. Define y = x∆

‖x∆‖c and z = x∆

‖x∆‖s . Since ‖y‖c = 1, by Proposition 3.2, y ∈ conv(NK
‖·‖s).

Therefore, there exists uy ∈ Rn such that ‖uy‖s ≤ 1, u ∈ ∆, card(u) ≤ K, and uy ≥m |y|. Therefore, by Lemma 3.1,
‖y‖s ≤ ‖uy‖s ≤ 1. This shows that ‖x∆‖s ≤ ‖x∆‖c. For the opposite inequality, since ‖z‖s = 1 and card(z) ≤ K,
z ∈ NK

‖·‖s ⊆ conv(NK
‖·‖s). Thus, by Proposition 3.2, ‖z‖c ≤ 1 and hence ‖x∆‖c ≤ ‖x∆‖s.

We next present an explicit formula that evaluates ‖ · ‖c. For an arbitrary x ∈ Rn, define s(x) ∈ RK as s(x)i =∑n
j=i |x|[j]
K−i+1 for all i ∈ {1, . . . ,K}. Let ix be the minimum index that minimizes s(x)i and let δ(x) = s(x)ix . By

convention, we define s(x)0 = s(x)K+1 =∞. Now, define u(x) ∈ Rn as

u(x)i =

{ |x|[i] i ∈ {1, . . . , ix − 1}
δ(x) i ∈ {ix, . . . ,K}

0 Otherwise
(11)

Theorem 3.4. Suppose s(x), ix, δ(x), and u(x) are defined as previously. Then,

1. s(x)i+1 − s(x)i = 1
K−i+1 (s(x)i+1 − |x|[i]) = 1

K−i (s(x)i − |x|[i]) for i = 1, . . . ,K − 1

2. s(x)1 ≥ · · · ≥ s(x)ix and s(x)ix ≤ · · · ≤ s(x)K

3. u(x) ≥m |x|

4. u(x)1 = max{|x|[1], s(x)1}

7
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Proof. For i = 1, . . . ,K − 1,

s(x)i+1 − s(x)i = 1
K−i

∑n
j=i+1 |x|[j] −

1
K−i+1

∑n
j=i |x|[j]

= 1
(K−i)(K−i+1)

{
(K − i+ 1)

∑n
j=i+1 |x|[j] − (K − i)

∑n
j=i |x|[j]

}
= 1

(K−i)(K−i+1)

{∑n
j=i+1 |x|[j] − (K − i)|x|[j]

}(
or = 1

(K−i)(K−i+1)

{∑n
j=i |x|[j] − (K − i+ 1)|x|[j]

})
= 1

K−i+1 (s(x)i+1 − |x|[i])(
or = 1

K−i (s(x)i − |x|[i])
)

and hence Part 1 follows.

Part 2 is clear when K = 2 and hence we assume that K ≥ 3. We first show that s(x)1 ≥ · · · ≥ s(x)ix . This is clearly
true when ix = 1 or 2. For ix ≥ 3, and i = 1, . . . , ix − 2, by Part 1 of the proposition,

s(x)i+2 − s(x)i+1 =
(s(x)i+1 − |x|[i+1])

K − i− 1
≥

(s(x)i+1 − |x|[i])
K − i− 1

=
K − i+ 1

K − i− 1
(s(x)i+1 − s(x)i). (12)

Therefore, the result follows by induction since s(x)ix − s(x)ix−1 ≤ 0 by minimality of s(x)ix . The proof of the
remainder of the statement is similar and hence we omit it.

We next prove Part 3. We first show that u(x) is nonincreasing. It is clear that it is true when ix = 1 and hence we assume
that ix ≥ 2. By Part 1, s(x)ix − |x|[ix−1] = (K − ix)(s(x)ix − s(x)ix−1) ≤ 0. Therefore, |x|[ix−1] ≥ s(x)ix = δ(x),
showing the desired result. Thus, u(x)[i] = u(x)i for all i = 1, . . . , n. Next, observe that

∑n
i=ix

u(x)i =
∑n
i=ix
|x|[i]

by definition of δ(x) and this implies the equality
∑n
i=1 u(x)i =

∑n
i=1 |x|[i]. We next show that

∑j
i=1 u(x)i ≥∑j

i=1 |x|[i] for all j = 1, . . . , n− 1. When j = 1, . . . , ix − 1, the inequality holds with equality by definition of u(x).
We next consider the case j ≥ ix. If ix = K, the inequality holds because

∑j
i=1 u(x)i =

∑n
i=1 u(x)i =

∑n
i=1 |x|[i] ≥∑j

i=1 |x|[i]. Now assume that ix < K. Since s(x)ix+1 ≥ s(x)ix and s(x)ix+1 − s(x)ix = 1
K−ix (s(x)ix − |x|[ix])

by Part 1, s(x)ix ≥ |x|[ix] and hence δ(x) = s(x)ix ≥ |x|[i] for all i ≥ ix. Therefore,
∑j
i=1 u(x)i −

∑j
i=1 |x|[i] =∑j

i=ix
u(x)i −

∑j
i=ix
|x|[i] =

∑j
i=ix

(δ(x)− |x|[i]) ≥ 0.

For Part 4, first assume ix = 1. Then, u(x)1 = s(x)1. By Part 1, s(x)1 ≥ |x|[1] and hence u(x)1 = max{|x|[1], s(x)1}.
Next, assume that ix ≥ 2. Then, u(x)1 = |x|[1]. By Part 2, s(x)2 ≤ s(x)1 and hence, by Part 1, s(x)1 ≤ |x|[1].
Therefore, u(x)1 = max{|x|[1], s(x)1}.

By Proposition 3.4, for arbitrary x ∈ Rn, we can construct a vector u(x) ∈ ∆ that satisfies the cardinality constraint
and majorizes |x|. In the following theorem, we show that x and u(x) actually have the same values of c-norm, enabling
us to evaluate ‖x‖c if ‖ · ‖s is calculable.
Theorem 3.2. For an arbitrary x ∈ Rn, suppose s(x), ix, δ(x), and u(x) are defined as previously. Then, ‖x‖c =
‖u(x)‖s.

Proof. The inequality ‖x‖c ≤ ‖u(x)‖s directly follows from Lemma 3.1, Proposition 3.3, and Part 3 of Proposition 3.4.
We next show ‖x‖c ≥ ‖u(x)‖s. Define w := u(x)/‖u(x)‖s so that w is on the boundary of the norm ball Bs := {y ∈
R
n | ‖y‖s ≤ 1}. Let β be an optimal solution to

max{wᵀβ | ‖β‖s∗ ≤ 1} (13)

where ‖ · ‖s∗ is the dual norm of ‖ · ‖s. Then, βᵀy = βᵀw be a supporting hyperplane of Bs that passes through w.
It is clear that ‖ · ‖s∗ is sign- and permutation-invariant. By rearrangement inequality and permutation-invariance of
‖ · ‖s∗, we can assume, without loss of generality, that β is in descending order. Furthermore, we can also assume that
β ≥ 0 because w ≥ 0 and ‖ · ‖s∗ is sign-invariant. We next define θ ∈ Rn as

θi =


βi i = 1, . . . , ix − 1∑K
j=ix

βj

K−ix+1 i = ix, . . . ,K
0 Otherwise

and consider the inequality θᵀy ≤ βᵀw. We claim that the inequality is valid for Bs. First, θ ∈ ∆ since β ∈ ∆

and βix−1 ≥
∑K
j=ix

βj

K−ix+1 . Therefore, by rearrangement inequality, it suffices to show the validity for Bs ∩∆. Define

8
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β̄ := (β1, . . . , βK , 0, . . . , 0) and notice that β̄ ≥m θ. Then, for each permutation matrix P , (P β̄)ᵀy ≤ βᵀw is valid
for Bs ∩ ∆ because for each y ∈ Bs ∩ ∆, (P β̄)ᵀy ≤ β̄ᵀy ≤ βᵀy ≤ βᵀw where the first inequality follows from
rearrangement inequality. The validity of θᵀy ≤ βᵀw follows from the fact that θ is a convex combination of β̄ and its
permutations. Next, define χ ∈ Rn by χi = βi for i = 1, . . . , ix − 1 and

∑K
i=ix

βi/(K − ix + 1) otherwise. Then,

χᵀx∆ =

ix−1∑
i=1

βi|x|[i] +

∑K
i=ix

βi

K − ix + 1

n∑
i=ix

|x|[i]

=

ix−1∑
i=1

βi|x|[i] +

K∑
i=ix

βi

∑n
i=ix
|x|[i]

K − ix + 1
= βᵀu(x).

(14)

We next claim that χᵀy ≤ βᵀw is valid for NK
‖·‖s . Again, it suffices to show its validity for NK

‖·‖s ∩∆. This is clear
because χᵀy = θᵀy for all y ∈ NK

‖·‖s ∩∆. Therefore, χᵀy ≤ βᵀw is valid for conv(NK
‖·‖s) = {y | ‖y‖c ≤ 1}. Finally,

βᵀ u(x)

‖x‖c
= χᵀ x∆

‖x‖c
≤ βᵀ u(x)

‖u(x)‖s
,

concluding that ‖x‖c ≥ ‖u(x)‖s.

Theorem 3.5. For a fixed x ∈ Rn, suppose u(x) is defined as (11) and w, β, θ, and χ are defined as in the proof of
Theorem 3.2. Then, χᵀy ≤ ‖θ‖s∗ is valid for NK

‖·‖s and it separates x∆ if x /∈ conv(NK
‖·‖s).

Proof. In the proof of Theorem 3.2, we showed that χᵀy ≤ βᵀw is valid for NK
‖·‖s . By definition of β and dual

norm, βᵀw = ‖θ‖s∗, proving the validity. Next, when x /∈ conv(NK
‖·‖s), ‖u(x)‖s = ‖x‖c > 1. Therefore, χᵀx∆ =

βᵀu(x) > βᵀ u(x)
‖u(x)‖s = βᵀw where the first equality follows from (14).

Remark. In the proof of Proposition 3.5, let T be the transformation (a composition of sign-conversions and permuta-
tions) that maps x to x∆. Then, the hyperplane that separates x and NK

‖·‖s is T−1(χ)y ≤ βᵀw.

Theorem 3.3 (Sparsity Theorem). For an arbitrary x ∈ Rn, consider the following optimization problem:

min ‖u‖s
s.t. u1 ≥ · · · ≥ uK ≥ 0,

uK+1 = · · · = un = 0,
u ≥m |x|

Then, u(x) is an optimal solution where u(x) is defined as in (11).

Proof. First, u(x) is feasible because of its definition and Part 3 of Proposition 3.4. Then, for any feasible solution u,
‖u‖s = ‖u‖c ≥ ‖x‖c = ‖u(x)‖s where the first equality follows from Proposition 3.3 and the first inequality from
Lemma 3.1, and the second equality from Theorem 3.2. Therefore, u(x) is an optimal solution.

Example 3.1. Consider the case where n = 6 and K = 3. Let N = {1, . . . , 6} and x :=
(

27
28 ,

5
28 ,

4
28 ,

3
28 ,

2
28 ,

1
28

)
.

Notice that ‖x‖2 = 1 and x ∈ ∆. Throughout this example, we want to check whether x ∈ conv(N3
‖·‖2) or not and

present an explicit separating hyperplane using the procedure described in the proof of Theorem 3.2. First, we construct
the vector s(x) ∈ R3 as follows:

s(x)1 =
∑6
j=1 xj

3−1+1 = 1
3

(
27
28 + 5

28 + 4
28 + 3

28 + 2
28 + 1

28

)
= 13

28

s(x)2 =
∑6
j=2 xj

3−2+1 = 1
2

(
5
28 + 4

28 + 3
28 + 2

28 + 1
28

)
= 15

56

s(x)3 =
∑6
j=3 xj

3−3+1 = 1
1

(
4
28 + 3

28 + 2
28 + 1

28

)
= 5

14

Observe that s(x)2 = min{s(x)1, s(x)2, s(x)3}. Next, we define u(x) ∈ R6 is as follows:

u(x)1 = x1 = 27
28 , u(x)2 = u(x)3 = s(x)2 = 15

56 , u(x)4 = u(x)5 = u(x)6 = 0

Since ‖u(x)‖2 = 1.036 · · · > 1, we conclude that x /∈ conv(N3
‖·‖2). We will confirm this by calculating a separating

hyperplane. We first construct a hyperplane that separates u(x) from conv(N3
‖·‖2). Notice that ‖ · ‖2 is self-dual and

u(x)/‖u(x)‖2 an optimal solution to (13) where w = u(x)/‖u(x)‖2. Therefore, we set β = u(x)/‖u(x)‖2. Then,

9
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the inequality βᵀy ≤ βᵀw(= 1) (or equivalently u(x)ᵀy ≤ ‖u(x)‖2) is valid for N3
‖·‖2 because, for any y ∈ N3

‖·‖2 ,
u(x)ᵀy ≤ ‖u(x)‖2‖y‖2 ≤ ‖u(x)‖2. Furthermore, it separates u(x) because u(x)ᵀu(x) = ‖u(x)‖22 > ‖u(x)‖2. We
next construct a hyperplane that separates x from N3

‖·‖2 . Define θ and χ as follows:

θ1 = β1 = 1
‖u(x)‖2u(x)1 = 1

‖u(x)‖2
27
28 , θ2 = θ3 = 1

3−2+1 (β2 + β3) = 1
‖u(x)‖2

15
56 , θ4 = · · · = θ6 = 0

χ1 = β1 = 1
‖u(x)‖2u(x)1 = 1

‖u(x)‖2
27
28 , χ2 = · · · = χ6 = 1

3−2+1 (β2 + β3) = 1
‖u(x)‖2

15
56

Observe that βᵀw = ‖θ‖2 = 1. Now consider the inequality χᵀy ≤ βᵀw(= 1). It is valid for N3
‖·‖2 because

for any y ∈ N3
‖·‖2 , χᵀy ≤ χᵀy∆ = θᵀy∆ ≤ ‖θ‖2‖y∆‖2 ≤ ‖θ‖2 = 1. Moreover, it separates x because χᵀx =

1
‖u(x)‖2

(
27
28 ,

15
56 ,

15
56 ,

15
56 ,

15
56 ,

15
56

)ᵀ ( 27
28 ,

5
28 ,

4
28 ,

3
28 ,

2
28 ,

1
28

)
= 1.036 · · · > 1.

Next, we consider some special cases of the set (9).
Theorem 3.6. Let S = {x ∈ Rq | card(x) ≤ K, ‖x‖∞ ≤ r} where ‖x‖∞ = |x|[1]. Then,

conv(S) = {x ∈ Rq | ‖x‖1 ≤ rK, ‖x‖∞ ≤ r} (15)

where ‖x‖1 :=
∑q
i=1 |xi| and ‖x‖∞ = |x|[1].

Proof. Observe that S/r = {x ∈ Rq | card(x) ≤ K, ‖x‖∞ ≤ 1}. Then,

conv(S) = r conv(S/r) = {y ∈ Rq | ‖u(y)‖∞ ≤ r} = {y ∈ Rq | max{|y|[1], s(y)1} ≤ r}

where the second equality follows from Proposition 3.2 and Theorem 3.2 and the third equality from Part 4 of
Proposition 3.4. Since s(y)1 = 1

K

∑q
j=1 |y|[j] by definition of s(y), the result follows.

When ‖ · ‖s is the Euclidean norm, the norm ‖ · ‖c associated with conv(NK
‖·‖2) is known to be K-support norm (or

a.k.a. K-overlap norm) and the explicit formula for the norm is known in [1]. We provide an alternative proof for the
formula using our arguments. For consistency with literature, we denote the K-support norm by ‖ · ‖spK .
Lemma 3.4. r = K − ix is the unique integer in {0, . . . ,K − 1} that satisfies (16) where |x|[0] =∞ by convention.

|x|[K−r−1] > s(x)K−r ≥ |x|[K−r]. (16)

Proof. We first claim that r = K − ix satisfies (16). That is, we prove |x|[ix−1] > s(x)ix ≥ |x|[ix]. By definition of ix,
s(x)ix < s(x)ix−1 and hence |x|[ix−1] > s(x)ix by Part 1 of Proposition 3.4 and the convention |x|[0] = ∞. When
ix ≤ K − 1 since s(x)ix+1 ≥ s(x)ix implies that s(x)ix ≥ |x|[ix]. When ix = K, s(x)K =

∑n
j=K |x|[j] ≥ |x|[K].

Therefore, (16) holds when r = K − ix. We next prove that (16) does not hold for all r 6= K − ix. When ix = 1,
{s(x)i}Ki=1 is non-decreasing and hence |x|K−r−1 ≤ s(x)K−r for all r = 0, . . . ,K − 2, violating the first inequality
of (16). Now, assume that ix ≥ 2. When r ≤ K − ix − 1, since s(x)K−r ≥ s(x)ix ≥ |x|[ix] ≥ |x|[K−r−1],
violating the first inequality of (16). We next assume that there exists r ∈ {K − ix + 1, . . . ,K − 1} that satisfies
(16). Since s(x)K−r+1 ≤ s(x)K−r, s(x)K−r ≤ |x|[K−r] by Part 1 of Proposition 3.4. Therefore, s(x)K−r = x[K−r],
implying that s(x)K−r = s(x)K−r+1 by Part 1 of Proposition 3.4. By (12), s(x)K−r = s(x)K−r+1 = · · · = s(x)ix ,
contradicting the minimality of ix.

Theorem 3.7 (Proposition 2.1 of [1]).

‖x‖spK =

K−r−1∑
i=1

x2
[i] +

1

r + 1

(
n∑

i=K−r
|x|[i]

)2
 1

2

. (17)

where r is the unique integer in {0, . . . ,K − 1} satisfying (16).

Proof. By Lemma 3.4, r = K − ix. By Theorem 3.2,

‖x‖spK = ‖u(x)‖2 =

(
ix−1∑
i=1

|x|2[i] + (K − ix + 1)δ(x)2

) 1
2

=

ix−1∑
i=1

|x|2[i] +
1

K − ix + 1

(
n∑

i=ix

|x|[i]

)2
 1

2

.

10



PURDUE UNIVERSITY MANAGEMENT DEPARTMENT WORKING PAPER NO 1315 - FEBRUARY 15, 2019

3.1 Convexification of sets of matrices characterized by their singular values

LetMm,n(R) be the set of m× n real-valued matrices. For M ∈Mm,n(R), let σ1(M) ≥ · · · ≥ σq(M) denote the
singular values ofM where q = min{m,n} and let σ :Mm,n(R)→ R

q be defined as σ(M) = (σ1(M), . . . , σq(M)).
Let ‖M‖sp = σ1(M) and ‖M‖∗ =

∑q
i=1 σi(M) be the spectral norm and the nuclear norm of M , respectively.

In this subsection, we consider sets of matrices that are characterized by their singular values. More specifically,
we are interested in sets of the form S̄ = {M ∈ Mm,n(R) | fi(σ(M)) ≤ 1, i = 1, . . . , r} and their convex hulls
where each fi is a sign- and permutation-invariant function. Define S = {x ∈ Rq | fi(x) ≤ 1, i = 1, . . . , r} where
q = min{m,n}. It is clear that M ∈ S̄ if and only if σ(M) ∈ S.

The following conjugacy result is a key tool to bridge conv(S̄) and conv(S).
Lemma 3.5 (Theorem 2.4 of [19]). Suppose f : Rq → R is sign- and permutation-invariant. Then,

(f ◦ σ)∗ = f∗ ◦ σ
where the asterisks represent the conjugate operator of the functions.
Theorem 3.6. Suppose S̄ = {M ∈ Mm,n(R) | fi(σ(M), z) ≤ 1, i = 1, . . . , r} and S = {x ∈ Rq | fi(x, z) ≤
1, i = 1, . . . , r} where q = min{m,n} and fi : Rq ×Rp → R, i = 1, . . . , r are a sign- and permutation-invariant
with respect to x ∈ Rq . Then, conv(S̄) = {M ∈Mm,n(R) | σ(M) ∈ conv(S)}.

Proof. Define H :Mm,n(R)→ R and h : Rq → R as follows:

H(M) =

{
0 M ∈ S̄
∞ otherwise , h(x) =

{
0 x ∈ S
∞ otherwise . (18)

Then, S̄ = {M | H(M) ≤ 1}, S = {x | h(x) ≤ 1}, and H = h ◦ σ. We next show that conv(S) = {x | h∗∗(x) ≤ 1}.
Suppose x ∈ conv(S). Then, x =

∑
j λjyj where λj ≥ 0 and yj ∈ S for all j and

∑
j λj = 1. Since h∗∗ is the closed

convex envelope of h, h∗∗(x) ≤
∑
j λjh

∗∗(yj) ≤
∑
j λjh(yj) = 0. Therefore, h∗∗(x) ≤ 1. We next consider an

arbitrary x such that h∗∗(x) ≤ 1. Using the fact that epi(h∗∗) = cl conv(epi(h)), we have (x, h∗∗(x)) =
∑
j λj(yj , zj)

where λj ≥ 0 and (yj , zj) ∈ epi(h) for all j and
∑
j λj = 1. Therefore, x =

∑
j λjyj and h∗∗(x) =

∑
j λjzj . Then,

1 ≥ h∗∗(x) =
∑
j λjzj ≥

∑
j λjh(yj). This implies that yj ∈ S for all j because otherwise,

∑
j λjh(yj) = ∞,

violating the inequality. This shows that x ∈ conv(X). We can also prove that conv(S̄) = {M | H∗∗(M) ≤ 1} by
using the similar arguments and we omit the proof.

By sign- and permutation-invariance of S, h is sign- and permutation-invariant and hence so is h∗. Then, by Lemma 3.5,
H∗ = h∗◦σ andH∗∗ = (h∗◦σ)∗ = h∗∗◦σ. Now, for an arbitraryM ∈ conv(S̄), sinceH∗∗(M) ≤ 1, h∗∗(σ(M)) ≤ 1
and hence σ(M) ∈ conv(S). Conversely, consider σ(M) ∈ conv(S). Then, h∗∗(σ(M)) ≤ 1 and hence H∗∗(M) ≤ 1,
showing that M ∈ conv(S̄).

Notice that the rank of a matrix can be represented as the cardinality of the vector of singular values and cardinality is a
sign- and permutation-invariant function. Therefore, we have the following result as a special case of Theorem 3.6.
Corollary 3.6.1. Let S̄ = {M ∈Mm,n(R) | rank(M) ≤ K, ‖σ(M)‖s ≤ r}. Then,

conv(S̄) = {M ∈Mm,n(R) | ‖σ(M)‖c ≤ r} (19)

Recall that determining if an arbitrary matrix M ∈Mm,n(R) is in the convex hull conv(S̄) can be easily done when
the norm ‖ · ‖s can be calculable. In particular, when ‖ · ‖s is the Euclidean norm, a given matrix M is in conv(S̄) if
‖σ(M)‖spK ≤ r. See (17) for an explicit formula for ‖ · ‖spK . Semidefinite representability of the convex hull will be
discussed in Subsection 3.2.

Next, we consider the special case where ‖ · ‖s is the l∞ norm. Proposition 3.6 and Theorem 3.6 together give an
alternative proof for the following result.
Theorem 3.8 (Theorem 1 of [15]). Let S̄ = {M ∈ Mm,n(R) | rank(M) ≤ K, ‖M‖sp ≤ r}. Then, conv(S̄) =
{M ∈Mm,n(R) | ‖M‖∗ ≤ rK, ‖M‖sp ≤ r}.

Theorem 3.6 can be generalized in the context of hyperbolic polynomials. A multivariate polynomial p in x ∈ Rn with
real coefficients is called homogeneous of degree d if it is a linear combination of monomials of degree d. That is, a
homogeneous polynomial is of the form

p(x) =
∑

α1+···+αn=d

cαx
α1
1 . . . xαnn

11
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where α = (α1, . . . , αn) ∈ Zn+. A real homogeneous polynomial p : Rn → R is called hyperbolic with respect to
e ∈ Rn if p(e) > 0 and the univariate polynomial p(te − a) has only real zeros for every a ∈ Rn. Those zeros are
called e-eigenvalues of a and denoted by λk(a), k = 1, . . . ,m for some m ∈ {1, . . . , n}. Without loss of generality, we
assume that λ1(a) ≥ · · · ≥ λm(a). Define the hyperbolicity cone associated with p as Λ++ = {a ∈ Rn | λm(a) > 0}
and denote its closure by Λ+. A hyperbolic program is an optimization of the form min{cᵀx | Ax ≤ b, x ∈ Λ+} for
some hyperbolic polynomial p ∈ Rn with respect to e ∈ Rn. When the associated polynomial is p(X) = det(X) and
the associated direction e is the identity matrix, the closure of the hyperbolicity cone is the positive semidefinite cone.
Therefore, hyperbolic programming is a generalization of semidefinite programming. A polynomial p : Rn → R is
isometric, if for all y, z ∈ Rn, there exists x ∈ Rn such that λ(x) = λ(z) and λ(x+ y) = λ(x) + λ(y). For example,
[14] showed that p = det is an isometric function: hence, the following conjugacy result generalizes the matrix case.
Lemma 3.7 (Fenchel Conjugacy (Theorem 5.4 of [6])). Suppose f is permutation-invariant and p is isometric. If
ranλ = {x | x1 ≥ · · · ≥ xm} then (f ◦ λ)∗ = f∗ ◦ λ where ranλ represents the range of the function λ.
Remark. 1. The authors of [6] defines Fenchel conjugate on convex functions, but the proof can still applied to

arbitrary functions.

2. p(X) = det(X) is isometric.

3. In semidefinite programming instance, ranλ = {x | x1 ≥ · · · ≥ xm}.

The following result is a generalization of Theorem 3.6 in the convex of hyperbolic programming. By similarity of the
proof with that of Theorem 3.6, we omit the proof.
Theorem 3.8. Consider an hyperbolic polynomial p : R

n → R with respect to e ∈ R
n. Let λ(a) =

(λ1(a), . . . , λm(a)) ∈ Rm be e-eigenvalues of an arbitrary a ∈ Rn where λ1(a) ≥ · · · ≥ λm(a). Suppose p is
isometric and ranλ = {x | x1 ≥ · · · ≥ xm}. For permutation-invariant functions fi : Rm → R, i = 1, . . . , r, define
S̄ = {a ∈ Rn | fi(λ(a)) ≤ ci, i = 1, . . . , r}. Then,

conv(S̄) = {a ∈ Rm | λ(a) ∈ conv(S)}
where S = {y ∈ Rm | fi(y) ≤ ci, i = 1, . . . , r}.

3.2 Semidefinite-representability of sets of matrices characterized by their singular values

We presented a convex hull result of a set of matrices S̄ that can be represented in their singular values in Corollary 3.6.1.
The resulting convex hull is written in a norm ‖ · ‖c induced by the defining norm ‖ · ‖s of S̄. While we provided an
explicit characterization of the membership of the convex hull, it does not guarantee that the convex hull can be modeled
in an SDP solver as a feasible set. In this subsection, we discuss the semidefinite representability of a set of the form
as follows: S = {M ∈ Mm,n(R) | rank(M) ≤ K, f(σ(M)) ≤ r} where f : Rq → R is a permutation-invariant
quasiconvex monotone function. A set is called semidefinite-representable if it is a projection of a set expressed by a
linear matrix inequality. We remark two well-known properties about semidefinite-representability. (see Section 4.2 of
[7]).
Lemma 3.9.

1. The sum of p largest singular values of a rectangular matrix is semidefinite-representable.

2. If A and B are semidefinite-representable then so is A ∩B and the representation is obtained by combining
two representations.

Theorem 3.10. Let q = min{m,n} and S̄ = {M ∈Mm,n(R) | rank(M) ≤ K, f(σ(M)) ≤ r} where f : Rq → R

is a permutation-invariant quasiconvex monotone function. Then, conv(S̄) is semidefinite-representable if lower level
sets of f are semidefinite-representable.

Proof. Let S = {x ∈ Rq | card(|x|) ≤ K, f(|x|) ≤ r}. By sign- and permutation-invariance of S and Theorem 2.7,

conv(S) =

x ∈ Rq
∣∣∣∣∣∣∣
f(u) ≤ r,
u1 ≥ · · · ≥ uK ≥ 0,
uK+1 = · · · = un = 0,
u ≥m |x|

 . (20)

By Theorem 3.6,

conv(S̄) =

M ∈Mm,n(R)

∣∣∣∣∣∣∣
f(u) ≤ r,
u1 ≥ · · · ≥ uK ≥ 0,
uK+1 = · · · = un = 0,
u ≥m |σ(M)|

 . (21)

12
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By definition of majorization inequality, the convex hull has the following representation:
f(u) ≤ r,
u1 ≥ · · · ≥ uK ≥ 0,
uK+1 = · · · = un = 0,∑j
i=1 ui ≥

∑j
i=1 σj(M), j = 1, . . . ,K,∑K

i=1 uj =
∑q
i=1 σi(M)

(22)

The semidefinite-representability of (22) follows from Lemma 3.9 and the semidefinite-representability of the level set
{u | f(u) ≤ r} and linear inequalities.

Observe that Theorem 3.10 is consistent with Proposition 4.2.2 in [7] except that we considered the rank constraint, but
they do not.

Corollary 3.10.1. Let S = {M ∈Mm,n(R) | rank(M) ≤ K, ‖σ(M)‖s ≤ r} where ‖ · ‖s is permutation-invariant
monotone norm. Then, conv(S) is semidefinite-representable. In particular, when ‖ · ‖s is Ky Fan p-norm for
p = 1, . . . ,min{m,n}, the convex hull is semidefinite-representable.

4 Convex envelopes of nonlinear functions

In this section, we explore the use of Theorem 2.7 in the development of relaxations of non-convex functions.

Lemma 4.1. Let x′ ∈ P , where P is permutation-invariant, and π be a permutation of {1, . . . , n} such that for each
i ∈ {1, . . . , n− 1}, x′π(i) ≥ x

′
π(i+1). Then, there exists a u′ ≥m x′ with u′ 6= x′ if and only if there does not exist an

a ∈ Rn such that aπ(i) > aπ(i+1) for all i ∈ {1, . . . , n− 1} and
∑n
i=1 ai(xi − x′i) ≤ 0 is valid for P .

Proof. We first show that if such an a and π exist, there cannot be a u′ ∈ P , u′ 6= x′, such that u′ ≥m x′. Assume such
a u′ exists and because P is permutation-invariant, by sorting u′ if necessary, we may assume that u′π(i) ≥ u′π(i+1)

for all i ∈ {1, . . . , n − 1}. Since u′ ≥m x′ and u′ 6= x′, there exists a y′, θ > 0, and k ∈ {1, . . . , n − 1} such that
u′ ≥m y′ ≥m x′, y′π(k) = x′π(k) + θ, and y′π(k+1) = x′π(k+1) − θ. Since u′ ∈ P , P is convex and permutation-
invariant, and y′ can be written as a convex combination of u′ and its permutations, it follows that y′ ∈ P . Therefore,∑n
i=1 ai(y

′
i − x′i) ≤ 0 or aπ(k) − aπ(k+1) ≤ 0. This leads to a contradiction to the assumed ordering of a.

Now, we show that if there does not exist u′ ∈ P such that u′ ≥m x′ with u′ 6= x′ then such an a exists. Choose any
π such that x′π(i) ≥ x′π(i+1) for all i ∈ {1, . . . , n − 1}. Let K := x′ +

∑n−1
i=1 απ(i)

(
eπ(i) − eπ(i+1)

)
, where α ≥ 0

and consider C = P −K. Since x′ ∈ P ∩K, it follows that 0 ∈ C. Let 〈a′, x〉 ≤ 0 define the minimal face of C
containing 0. We will show that a can be chosen to be a′. Observe that eπ(i+1) − eπ(i) ∈ C for all i ∈ {1, . . . , n− 1}.
Therefore, a′π(i+1) − a

′
π(i) ≤ 0. We now show that the inequality is in fact strict. Assume, on the contrary, that there

exists a k ∈ {1, . . . , n − 1} such that 〈a′, eπ(k+1) − eπ(k)〉 = 0. Then, there exists a small enough ε > 0 such that
ε
(
eπ(k) − eπ(k+1)

)
∈ C because 0 is in the relative interior of its face containing eπ(k+1) − eπ(k). It follows that

there exists x′′ ∈ P and α′ ≥ 0 such that ε
(
eπ(k) − eπ(k+1)

)
= x′′ − x′ −

∑n−1
i=1 α

′
π(i)

(
eπ(i) − eπ(i+1)

)
. Therefore,

x′′ = x′ + ε
(
eπ(k) − eπ(k+1)

)
+
∑n−1
i=1 α

′
π(i)

(
eπ(i) − eπ(i+1)

)
. Since ε > 0, x′′ ∈ P , x′′ ≥m x′ and x′′ 6= x′,

choosing u′ = x′′ contradicts the assumption that such a u′ does not belong to P . Therefore, for all k ∈ {1, . . . , n− 1},
a′π(k+1) − a

′
π(k) < 0.

Definition 4.1. A function φ : C 7→ R is said to be Schur-concave on C, if for every x, y ∈ C, x ≥m y implies that
φ(x) ≤ φ(y).

In this section, for any function φ : C 7→ R we denote {(x, φ) | φ(x) ≤ φ ≤ α, x ∈ P} as epi≤α(φ). A common
tool in the construction of convex envelopes is to restrict the domain of the function to a smaller subset. We will
say that a function φ : C 7→ R can be restricted to X , where X ⊆ C for the purpose of obtaining the convC(φ) if
convC(φ|X) = convC(φ), where φ|X(x) is defined as φ(x) for any x ∈ X and +∞ otherwise. Theorem 2.7 can play
a key role in obtaining the restriction as we illustrate below.

Lemma 4.2. Let φ : P 7→ R be a Schur-concave function, where P is a permutation-invariant polytope. Let
M := {x | x ∈ P, 6 ∃u ∈ P s.t. u ≥m x, u 6= x}. Let S := {(x, φ) | φ(x) ≤ φ ≤ α, x ∈ P} and X := {(x, φ) |
φ(x) ≤ φ ≤ α, x ∈M}. Then, conv(S) = conv(X).

13
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Proof. Since M ⊆ P it follows that X ⊆ S and, therefore, conv(X) ⊆ conv(S). Now, consider (x′, φ′) ∈ S\X .
Therefore, φ(x′) ≤ φ′ ≤ α and x′ ∈ P\M . Let x′′i = 1

n

∑n
i′=1 x

′
i′ for all i ∈ {1, . . . , n}. Let u′ := arg max

{
‖u −

x′′‖ | u ≥m x′, u ∈ P
}

. The maximum is achieved because the feasible set is bounded and objective is upper-
semicontinuous. Assume there exists a y′ ∈ P such that y′ ≥m u′ and y′ 6= u′. Since u′ can be written as a convex
combination of permutations of y′ and the objective of the problem defining u′ is permutation-invariant and strictly
convex, it follows that ‖y′ − x′′‖ > ‖u′ − x′′‖ violating the optimality of u′. Therefore, there does not exist y′ ∈ P
such that y′ ≥ u′ and y′ 6= u′. Therefore, u′ ∈M . Since φ is Schur-concave, it follows that φ(u′) ≤ φ(x′) ≤ φ′ ≤ α.
Therefore, (u′, φ′) ∈ X . Since x′ ≤m u′, it follows that x′ can be written as a convex combination of u′ and its
permutations. Therefore, (x′, φ′) is not an extreme point of the epigraph of S and S ⊆ conv(X). It follows that
conv(S) ⊆ conv(M).

It is often useful to restrict the set S to a superset of its extreme points before using Theorem 2.4 to construct the
convex hull. We discuss such applications. We are interested in sets S(Z, a, b) := {(x, z) | (x, z) ∈ Z, x ∈ [a, b]n},
where Z is compact and permutation-invariant in x. Further, for F = {F1, . . . , Fr}, where Fi are faces of [a, b]n, we
define X(Z, a, b,F) :=

{
(x, z) ∈ [a, b]n×Rm

∣∣∣ (x, z) ∈ Z, x ∈
⋃r
i=1 Fi

}
. Observe that by choosing F = {[a, b]n},

there is a trivial collection of faces such that conv
(
S(Z, a, b)

)
= conv

(
X(Z, a, b,F)

)
. However, more importantly,

as we shall discuss later, there are many situations, where we can identify an exponential collection of faces F ′
such that conv

(
S(Z, a, b)

)
= conv

(
X(Z, a, b,F ′)

)
and conv

(
X(Z, a, b, {Fi})

)
has a polynomial (possibly extended)

formulation. For concreteness, consider Z =
{

(x, z) | z =
∏n
i=1 xi

}
. In this case, F ′ = {a, b}n, the extreme points

of [a, b]n satisfies the preceding hypotheses. Although, in these situations, an extended formulation for conv(S) can be
constructed using disjunctive programming, such results have found limited use, since the size of F ′ is often exponential
as in our example. Next, we argue that Theorem 2.4 allows the construction of a polynomial-size extended formulation
in these instances.

Theorem 4.3. Let a, b ∈ R, Z be a compact permutation-invariant set, and F = {F1, . . . , Fr} be a collection of faces
of [a, b]n such that conv

(
S(Z, a, b)

)
= conv

(
X(Z, a, b,F)

)
. Moreover, assume that conv(X(Z, a, b, {Fi})) has a

polynomial-sized compact extended formulation. Then, conv
(
S(Z, a, b)

)
has a polynomial-sized extended formulation.

Proof. For brevity of notation, in this proof, we shall write S(Z, a, b) as S and X(Z, a, b,F) as X(F). We construct
conv(S) using its equivalence to conv

(
X(F)

)
. We may assume for computing conv

(
X(F)

)
, by taking the union

of all permutations of X(F) w.r.t. x if necessary, that X(F) is permutation-invariant in x. This is because a
permutation of X(F) w.r.t. x, say Xπ(F) :=

{
(x, z) | π(x) ∈ Xπ(F)

}
, is contained in conv

(
X(F)

)
as is seen from

Xπ(F) ⊆ S(Z, a, b) ⊆ conv
(
S(Z, a, b)

)
= conv

(
X(F)

)
, where the first inclusion is by permutation-invariance of

S and the equality is by the assumed hypothesis. Since S is permutation-invariant with respect to x, by Lemma 2.1,
conv(S) is also permutation-invariant. We shall use Theorem 2.4 to construct conv

(
X(F)

)
. We first show that we

can limit the faces of [a, b]n that need to be considered in the construction of S0. Consider an arbitrary face Fi of
[a, b]n, which is determined by setting a set of variables with indices in Bi ⊆ {1, . . . , n} to their upper bound b and
a disjoint set of variables Ai ⊆ {1, . . . , n} to their lower bound a. The only faces, Fi, i = 1, . . . , r that need to be
considered are such that Bi and Ai are hole-free, i.e., Bi is of the form {1, . . . , p} and Ai is of the form {q, . . . , n}.
To see this, let j(i) = max{j | j ∈ Bi} and Xi = X({Fi}) ∩ {(x, z) | x1 ≥ · · · ≥ xn}. Assume i′ is the index
of a face such that j(i′) > |Bi′ |, Xi′ contains a point which is not in

⋃
i:j(i)=|Bi|Xi and, among all such faces, i′ is

chosen to minimize j(i) − |Bi|. Since Bi′ is not hole-free, there exists j /∈ Bi′ such that j < j(i′). Any point that
belongs to Xi′ must satisfy b ≥ xj ≥ xj(i′) = b. Therefore, xj = b. Since Xi′ 6= ∅, j 6∈ Ai. Consider now i′′ such
that Bi′′ = Bi ∪ {j}\{j(i′)} and Ai′′ = Ai′ . Such a face exists in F since we assumed that for every face Fi ∈ F , F
contains all faces obtained by permuting the variables, and Fi′′ is obtained from Fi′ by exchanging the variables xj and
xj(i′). Moreover, since Xi′′ ⊇ Xi′ , it contains a point not in

⋃
i:j(i)=|Bi|Xi, establishing that j(i′′) > |Bi′′ |. However,

since j(i′′)− |Bi′′ | < j(i′)− |Bi′ |, this contradicts our choice of i′. A similar argument can be used to show that we
only need to consider faces Fi such that Ai is hole-free.

Now, it is easy to see that there are at most
(
n+2

2

)
many such faces, one for each choice of (p, q), where 0 ≤ p ≤

q − 1 ≤ n. Since each X({Fi}) has a polynomial-sized compact extended formulation, it follows, by disjunctive
programming, that conv(S0) has a polynomial-sized compact extended formulation. Then, the result follows directly
from Theorem 2.4.
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We record and summarize the extended formulation of conv
(
S(Z, a, b)

)
for later use in the following result. We say a

collection of faces F is permutation-invariant, if for a face described by an inequality, there is another face in F that is
described by a permutation of coefficients of the inequality.

Corollary 4.3.1. Let a, b ∈ R, Z be a compact permutation-invariant set, and F = {F1, . . . , Fr} be a collection
of faces of permutation-invariant faces of [a, b]n. Let I =

{
i | ∃p, q, p < q, s.t. ∀x ∈ Fi, xi = b if i ≤ p and xi =

a if i ≥ q
}

. Then,

conv
(
X(Z, a, b,F)

)
=
{

(u, z)
∣∣∣ conv

(⋃
i∈I

X
(
Z, a, b, {Fi}

))
, u1 ≥ · · · ≥ un, u ≥m x

}
.

Theorem 4.3 shows that even though the number of faces in F is exponentially many, we can exploit the permutation-
invariance of the set to consider only polynomially many faces in the construction. More explicitly, there are 2n−d

(
n
d

)
d-dimensional faces of [a, b]n and

(
n+1
d+1

)
d-dimensional faces of the simplex b ≥ x1 ≥ · · · ≥ xn ≥ a. But, there

are only n − d + 1 of the faces of the hypercube, namely, Fl for l ∈ {0, . . . , n − d}, where Bl = {1, . . . , l} and
Al = {l − d+ 1, . . . , n}.
Combining Lemmas 4.1 and 4.2, it follows that we may restrict φ to the set of points which have no other point
majorizing them in the domain. For a point x′ ∈ M as defined in Lemma 4.2, it follows that there must be a vector
a such that 〈a, x− x′〉 ≤ 0 is valid for P , where coefficients of a can be sorted in a monotonic decreasing sequence.
Now, construct a graph G = (V,E) where the vertices are labeled 1, . . . , n. Then, for {i, j} connect the vertices with a
directed arc labeled with the index of the facet-defining inequality if the coefficient of xi is larger than that of xj in the
inequality. Then, for a point x′ to be in M , it must be tight on inequalities that yield a hamiltonian path through the
vertices. For example, if each inequality only yields k arcs, then x′ must be tight on dn−1

k e facet-defining inequalities.
As such, it will belong to a face of P of dimension at most n− dn−1

k e. This is particularly interesting in the case of
hypercubes, where k = 1 and the result implies that the function can be restricted to one-dimensional faces for the
purpose of constructing convex envelope of the function or its level set. In this case, the direct proof is straightforward,
and we include it below.

Theorem 4.1. Consider a Schur-concave function φ(x) : [a, b]n 7→ R and the set Sα : {(x, φ) | φ(x) ≤ φ ≤ α, x ∈
[a, b]n}. For any x ∈ [a, b]n let S(x) =

∑n
i=1(xi − a). For any s ∈ R, define is = max

{
i | i(b− a) < S(s)

}
and

uxi =


b if i ≤ ix
a+ s− (b− a)ix if i = ix + 1

a otherwise.
(23)

Let Θα :=
{

(x, φ) | φ
(
uS(x)

)
≤ φ ≤ α, x ∈ [a, b]n

}
. Then, conv

(
Sα
)

= conv(Θα). Moreover, if φ(·) is convex when
all but one x variable is fixed, Θα is convex.

Proof. We first show that uS(x′) ≥m x′. This follows because uS(x′) simultaneously maximizes the continuous
knapsack problems max

{∑j
i=1 xi |

∑j
i=1 xi = S(x) + na, x ∈ [a, b]n

}
for all j because the ratio of objective and

knapsack coefficient of xi reduces with increasing i, and x′ is a feasible solution to these knapsack problems.

We now show that Sα ⊆ Θα. Let (x′, φ′) ∈ Sα. Therefore, φ(uS(x′)) ≤ φ(x′) ≤ φ ≤ α, where the first inequality
follows from Schur concavity of φ and uS(x′) ≥m x′, and the remaining inequalities follow because (x′, φ′) is feasible
to Sα. Therefore, (x′, φ′) ∈ Θα.

Now, we show that Θα ⊆ conv
(
Sα
)
. Let (x′, φ′) ∈ Θα. Since uS(x′) ∈ [a, b]n and φ(uS(x′)) ≤ φ′ ≤ α, it follows

that (uS(x′), φ′) ∈ Sα. However, then it follows that (x′, φ′) ∈ conv
(
Sα
)

since uS(x′) ≥m x′ implies that x′ can be
written as a convex combination of permutations of uS(x′) and Sα is permutation-invariant in x.

To show the last statement, we write Θα as proj(x,φ) Ξα, where Ξα =
{

(x, s, φ) | ϕ(s) ≤ φ ≤ α, x ∈ [a, b]n, s =∑n
i=1(xi − a)

}
and ϕ(s) = φ(us). The result follows if ϕ(s) is convex over [0, n(b − a)] since Θα is expressed

as the projection of a convex set, Ξα. First, observe that, for s ∈
(
i(b − a), (i + 1)(b − a)

)
, the convexity of ϕ(s)

follows from the assumed convexity of φ(us) when us varies only along the ith coordinate. Choose k ∈ {0, . . . , n− 1}
and let s̄ = k(b − a). To prove the result, it suffices to check that the left derivative of ϕ(s) at s̄ is no more than
the corresponding right derivative. For sufficiently small ε > 0, observe that us̄ + εek ≥m us̄ + εek+1 because
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b = us̄k > us̄k+1 = a. Since φ(·) is Schur-concave, it follows that φ(us̄ + εek) ≤ φ(us̄ + εek+1) = ϕ(s̄+ ε). Then, the
following chain of inequalities follows

lim
ε↓0

ϕ(s̄)− ϕ(s̄− ε)
ε

= lim
ε↓0

φ(us̄)− φ(us̄ − εek)

ε
≤ lim

ε↓0

φ(us̄ + εek)− φ(us̄)

ε
≤ lim

ε↓0

ϕ(s̄+ ε)− ϕ(s̄)

ε
,

where the first equality is by the definition of ϕ(·) and us̄, first inequality is from the assumed convexity of φ(·) when
the argument is perturbated only along the kth coordinate and the second inequality is because φ(us̄ + εek) ≤ ϕ(s̄+ ε)
and φ(us̄) = ϕ(s̄).

In essence, Proposition 4.1 shows that we can reduce our attention to the edges of the hypercube in our construction
of the convex hull of Sα. A similar result can be shown for upper level sets of quasiconcave functions over general
polytopes ]. Symmetric quasiconcave functions are a subclass of Schur-concave functions. In other words, both the
results show that for symmetric quasiconcave functions over permutation-invariant polytopes it suffices to consider the
edges of the polytope to construct the convex hull. However, the result in ] applies to general quasiconcave functions
over arbitrary polytopes while Proposition 4.1 applies to Schur-concave functions over a hypercube. Perhaps more
importantly, the result in Propostion 4.1 also applies to level sets of the functions while the result in [] only applies to
convex envelope construction.

Many of the applications of Theorem 4.3 extend beyond Schur-concave functions. For example, if we consider the
convex hull of {(x, α) ∈ [a, b]n ×R |

∏n
i=1 xi ≤ α}, where a is not necessary positive. Note that the product function

is not Schur-concave when some of the variables can be negative, for example consider x1x2x3 and observe that
although (1,−1,−3) ≥m (0, 0,−3), the function value is higher at (1,−1, ,−3) than at (0, 0, 3).

Theorem 4.2. Consider a function φ(x) : [a, b]n 7→ R, that is permutation-invariant in x and whose convex envelope
remains the same even if its domain is restricted to {a, b}n. For i = 1, . . . , n and j = 0, . . . , n, let pij = a if i > j and
b otherwise and let p·j denote the jth column of this matrix. Define f(x) := φ(p·0) +

∑n
i=1

xi−a
b−a

(
φ(p·i)− φ(p·i−1)

)
.

Then, the convex envelope of φ(x) over [a, b]n can be expressed as the value function of the following problem:

conv
[a,b]n

φ(x) = max
{
f(u)

∣∣ u ≥m x, b ≤ u1 ≥ · · · ≥ un ≥ a}. (24)

Proof. Observe that the points in {a, b}n that intersect with x1 ≥ · · · ≥ xn are precisely the columns p·j described
in the statement of the result. Consider the column p·j and observe that f

(
p·j
)

= φ(p·j). Moreover, f(x) is linear.
Let ∆ = {x ∈ {a, b}n | b ≥ x1 ≥ · · · ≥ xn ≥ a}. Then, we show that f(x) = convconv(∆)(φ|∆), where φ|∆ denotes
the restriction of φ to ∆. Clearly, f(x) ≤ convconv(∆)(φ|∆) because it matches φ∆ at all the points in the domain and
is a convex underestimator. Also, f(x) ≥ convconv(∆)(φ|∆) because of Jensen’s inequality applied to convconv(∆)(φ),
exactness of f(x) at the extreme points of ∆, and affinity of f(x). Now consider Corollary 4.3.1. Let F be the extreme
points of [a, b]n and Z = {(x, z) | z ≥ φ(x)}. Then, by assumption, conv

(
S(Z, a, b)

)
= conv

(
X(Z, a, b,F

)
. Then,

in the statement of Corollary 4.3.1, R =
{

(i, i+ 1)
∣∣ i = 1, . . . , n− 1

}
and conv

(⋃
(p,q)∈RX(Z, a, b, {Fipq})

)
=

{(x, z) | z ≥ f(x), b ≥ x1 ≥ · · · ≥ xn ≥ a}. Then, the result follows from Corollary 4.3.1.

Theorem 4.3. Consider S =
{

(x, y) ∈ H
∣∣∣ ∏m

i=1 y
α
i ≥

∏n
j=1 x

β
j

}
, where H = [c, d]m × [a, b]n, with a ≥ 0, c ≥ 0,

α > 0, and β > 0. Let k = min{m,
⌊
β
α

⌋
}. Define the convex sets:

Sij = S ∩
{

(yr)
i
1 = d, y ∈ ∆m, (yr)

m
i+k+1 = c; (xs)

j
1 = b, (xs)

n
j+2 = a

}
Cj = S ∩

{
y ∈ ∆m; (xs)

j
1 = b, (xs)

n
j+1 = a

}
for i = 0, . . . ,m− k and j = 0, . . . , n− 1. Let T =

⋃
i,j Sij ∪

⋃
j Cj . The convex hull S is obtained as:

conv(S) = X := {(x, y) | v � y, u � x, (u, v) ∈ conv(T )}.
In particular, if mα ≤ β, then the convex hull is given by

conv(S) = X ′ :=

(x, y) ∈ H

∣∣∣∣∣∣
m∏
i=1

y
1
m
i ≥

n∏
j=1

u(x)j
β
mα

 , (25)
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where u(x) is defined as follows. For any x ∈ [a, b]n and s ∈ R, let S(x) =
∑n
i=1(xi − a). Then,

u(x)i =


b if i ≤ ix
a+ s− (b− a)ix if i = ix + 1

a otherwise.
(26)

Proof. Let φ(x) :=
∏n
j=1 x

β
j and consider the set Υ(γ) = {x ∈ [a, b]n | φ(x) ≤ γ}. By Theorem 3.A.3 in [22], φ(x)

is Schur-concave over [a, b]n because it is permutation invariant and ∂φ
∂x1
≤ ∂φ

∂x2
at any point with x1 ≥ · · · ≥ xn. Let

Υi(γ) =
{
x
∣∣ xβi b(i−1)βa(n−i)β ≤ γ

}
. Then, it follows by Proposition 4.1 and Corollary 4.3.1 that conv(Υ(γ)) ={

x
∣∣ u ≥m x, u1 ≥ · · · ≥ un, u ∈ conv

(⋃n
i=1 Υi(γ)

)}
.

Now, let ψ(y) :=
∏m
i=1 yi and consider the set Θ =

{
(x, y) ∈ [a, b] × [c, d]m

∣∣ ζψ(y) ≥ δx
β
α

}
, where δ, ζ ≥ 0.

Consider a point (x′, y′) ∈ Θ. Then, by restricting attention to ȳ = λy′, we obtain the subset Λ of Θ such that
Λ =

{
(x, λ) ∈ [a, b]× [c′, d′]

∣∣ λθ ≥ δ′x β
mα

}
, where θ = ζ

1
mψ(y′)

1
m , δ′ = δ

1
m , c′ = max{λ | λy′i ≤ c for some i},

and d′ = min{λ | λy′i ≥ d for some i}. If x′ ∈ {a, b}, the point belongs to the convex subset of Θ obtained by
fixing x′ at its current value because the defining inequality can be written as ζ

1
mψ(y)

1
m ≥ δx′

β
α , a convex inequality.

Therefore, we may assume that x′ ∈ (a, b). First, consider the case when y′ ∈ (c, d)n. Then, it follows that c′ < 1 and
d′ > 1 and (x′, 1) ∈ Λ. Assume m > β

α and let s = δ′ βmα (x′)
β
mα−1. If x′ ∈ (a, b), then, for 0 < ε ≤ min{x′−a,b−x′}

max{θ,1} ,
we show that (x′, 1) can be written as a convex combination of (x′− εθ, 1− sε) and (x′+ εθ, 1 + sε). The latter points
are feasible in Λ because:

δ′(x′ ± εθ)
β
mα ≤ δ′x′

β
mα + s(x′ ± εθ − x′) ≤ θ(1± sε),

where the first inequality is by concavity of x
β
mα for m ≥ β

mα and the second inequality is because δ′x′
β
mα ≤ θ by

the feasibility of (x′, 1) in Λ. Since ψ(y)
1
m is homogenous, we have expressed (x′, y′) as a convex combination of(

x′ − εθ, (1− sε)y′
)

and
(
x′ − εθ, (1 + sε)y′

)
, each of which is feasible to Θ. Since ε > 0 and x′ > a ≥ 0 implies

s > 0, it follows that these points are distinct and that (x′, y′) is not an extreme point of the feasible region. Therefore,
we may assume that there exists an i such that y′i ∈ {c, d}. However, in this case, we can reduce the dimension of the
set by fixing yi at y′i and effectively reducing m. In other words, we may assume without loss of generality that m ≤ β

α .
Then, we rewrite the defining inequality of Θ as ζ

1
mψ(y)

1
m ≥ δ

1
mx

β
mα and observe that this is a convex inequality

since ψ(y)
1
m is a concave function and x

β
mα is a convex function. Therefore, we need to consider faces where either all

xj are fixed at their bounds or where we fix all yi except for a set of cardinality min
{
m,
⌊
β
α

⌋}
and fix all xj except for

one.

Since Sij ⊆ S and Cj ⊆ S and S is permutation-invariant, it follows that conv(S) ⊇ X . Since X is convex and S is
compact, we only need to show that the extreme points of S are contained in X . However, we have shown that the
extreme points of S belong to T or a set obtained by permuting x and/or y variables, it follows that the extreme point
belongs to X . Therefore, X = conv(S).

Now, we consider the case mα ≤ β. Clearly, k = m. If we fix y at ȳ, it follows from Proposition 4.1 that the

convex hull of this slice is defined by
∏m
i=1 ȳ

1
m
i ≥

∏n
j=1 u(x)

β
mα
j . Then, as in the proof of Proposition 4.1, we let

ϕ(s) =
∏n
j=1 u(x)

β
mα
j , where s =

∑n
i=1(xi − a), and rewrite the above inequality as ϕ(s) −

∏m
i=1 y

1
m
i ≤ 0. Since

the left-hand-sise is jointly convex in (s, y) and s is a linear function of x, this proves that X ′ in (25) is convex in (x, y).

By Schur-concavity of
∏n
j=1 x

β
mα
j , it follows that

∏n
j=1 x

β
mα
j ≥

∏n
j=1 u(x)

β
mα
j . This implies that S ⊆ X ′ ⊆ conv(S).

Since X ′ is convex, it is the same as conv(S).

We have given various results where we describe the convex hull of a set in an extended space by introducing variables u.
We now discuss how inequalities in the original space can be obtained by solving a separation problem. Usually, given
a set X and an extended space representation of its convex hull, C, we separate a given point x̄ from X by solving the
problem inf(x,u)∈C ‖x− x̄‖, where C is the extended space representation of X . By duality, the optimal value matches
max‖a‖∗≤1

{
〈x̄, a〉 − h(a)

}
, where h(·) is the support-function of C and ‖ · ‖∗ is the dual norm. Then, if the optimal

value, z∗ is strictly larger than zero and the optimal solution to the dual problem is a∗, we have 〈x̄, a∗〉 − z∗ ≥ 〈x, a∗〉
for all x ∈ projx C and this inequality separates x̄ from C.
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Given the structure of permutation-invariant sets and their extended space representation admits an alternate approach.
Assume we are interested in developing the convex envelope of a permutation-invariant function φ, such as x1 . . . xn,
over [a, b]n. Let the convex envelope of φ at x be obtained by expressing x as a convex combination of u and its
permutations, where u ≥m x. Moreover, assume that the convex envelope at u is obtained as a convex combination of
the extreme points of the simplex a ≤ x1 ≤ · · · ≤ xn ≤ b. We can collect the extreme points of this simplex as the
columns of a matrix V and write x = SV γ. Then, it follows that there exists a representation of x = Su, where S is a
doubly stochastic matrix.

However, such an inequality is typically not facet-defining for conv(X) even when the latter set is polyhedral. We
now discuss a separation procedure that can generate facet-defining inequalities. We implement it for convex hulls of
multilinear sets over [a, b]n to evaluate their impact on the quality of the relaxation. For the purpose of illustration,
consider the special case of

∏n
i=1 xi over [a, b]n. In this case, (24) reduces to:

min an +

n∑
i=1

bi−1an−i(ui − a)

s.t. x �m u
a ≤ un ≤ · · · ≤ u1 ≤ b

Given an x ∈ Rn in general position inside [a, b]n, assume that the optimal solution to the above problem is u. Then,
we express x = Su, where S ∈ Rn×n is a doubly-stochastic matrix. Given x and u, this problem can be solved as
a linear program. In our implementation, we use this approach, given the simplicity, although S can also be derived
as a product of T-transforms (see proof of Lemma 2 in Section 2.19 of Inequalities, by Hardy, Littlewood, Polya []).
Then, we express S as a convex combination of permutation matrices. Such a representation exists due to Birkhoff
Theorem and can be obtained by the following straightforward algorithm. Observe that in such a representation all
permutation matrices with non-zero convex multipliers must have a support that is contained within the support of
S. This implies that the bipartite graph, we describe next, has a perfect matching. The bipartite graph is constructed
with nodes labeled {1, . . . , n} in each partition and edges that connect a node i in the first partition to j in the second
partition if and only if Sij > 0. Given a bipartite matching, we construct a permutation matrix P so that Pij = 1 if
node i in the first partition is matched to node j in the second partition. Then, we associate P with a convex multiplier
π to the minimum non-zero value of SijPij . Observe that 1

1−π (S − πP ) is again a doubly-stochastic matrix with one
less non-zero entry. Therefore, by recursively using the above approach we obtain S as a convex combination of at
most n2 permutation matrices. Then, we permute u according to these permutation matrices and observe that for each
such u, the convex envelope is given by the optimal function value of the above linear program. Each permuted u
can be expressed as a convex combination of the corner points of the permuted simplex {a ≤ u1 ≤ · · ·un ≤ b}. The
extreme points with non-zero multipliers must all be tight on the inequality. Then, we obtain the inequality by fitting an
inequality to be tight at these points.

5 Stochastic Dominance

In this section, we revisit the convexification result in [12]. Consider two random variables X,Y in (Ω, 2Ω, P ) where
Ω is the sample space and P is a probability measure. Let FX and FY be cumulative distribution function of X and Y
respectively. Then, X is said to dominate in the first order Y if

FX(t) ≤ FY (t)

for all t ∈ R. On the other hand, X is said to dominate in the second order Y if∫ t

−∞
FX(s)ds ≤

∫ t

−∞
FY (s)ds.

Consider random variables X,Y in (Ω := {1, . . . , n}, 2Ω, P ) where P is defined as P (k) = 1/n for all k = 1, . . . , n
and define vectors x and y as xi = X(i) and yi = Y (i) for i = 1, . . . , n. Then, the notions of the stochastic dominances
can be equivalent written in terms of x and y. That is, X dominates in the first order Y if and only if y[i] ≥ x[i] and X
dominates in the second order Y if and only if x ≥wm y.

For a given y ∈ Rn, define

A1 = {x : y[i] ≥ x[i], i = 1, . . . , n}, A2 = {x : x ≥wm y}, A3 = {x : y ≥wm x}.

The following lemma demonstrates the existence of an intermediate vector between two vectors where a vector weakly
majorizes the other.
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Lemma 5.1 ([22], 5.A.9., 5.A.9.a.). 1. Suppose x ≥wm y. Then, there exist u and v such that

x ≥m u and u ≥ y, x ≥ v and v ≥m y.

2. Suppose x ≥wm y. Then, there exist u and v such that

x ≥m u and y ≥ u, v ≥ x and v ≥m y.

We next prove the following convexification result.

Theorem 5.1 (Dentcheva and Ruszczyński, [12]). For a given y ∈ Rn,

conv(A1) = A2 = A3.

Proof. Observe that A1 is permutation-invariant and hence by Theorem 2.7,

conv(A1) =

{
x :

y[i] ≥ ui, i = 1, . . . , n
u1 ≥ · · · ≥ un,
u ≥m x

}
. (27)

In this proof, let K be the right-hand side of (27). For every x ∈ K, let u be satisfying the constraints in (27). Then, for
each j = 1, . . . , n, it is clear that

n∑
i=j

x[i] ≤
n∑
i=j

ui ≤
n∑
i=j

y[i]

where the first inequality follows from the majorization inequality. Therefore, x ∈ A2. On the other hand, let
x ∈ A2 so that x ≥wm y. Then, by Lemma 5.1, there exists v such that y ≥ v and v ≥m x. By defining u by
ui = v[i], i = 1, . . . , n, (x, u) satisfies all constraints in (27). This shows that x ∈ K.

Notice that Theorem 5.1 is a convexification result in a projected space for a given y value. However, Theorem 2.7
enables us to extend the result to the original space so that the convex hull can be obtained in a higher dimensional
space.

Theorem 5.2. Let B1 = {(x, y) : y[i] ≥ x[i], i = 1, . . . , n}. Then,

conv(B1) =

(x, y) :

vi ≥ ui, i = 1, . . . , n,
u1 ≥ · · · ≥ un,
v1 ≥ · · · ≥ vn,
u ≥m x,
v ≥m y

 .

As we discussed earlier, the convex hull can be described using linear inequalities after modeling the majorization
inequalities.

6 Modeling logical constraints

Next, we discuss the formulation of certain logical requirements in 0-1 variables. In particular, we study a set that
generalizes various models described in the literature. We present an extended formulation for the convex hull of this
set, which we obtain through the use of the results of Section 2. This characterization provides streamlined convex hull
derivations for various sets studied in the literature.

In the ensuing discussion, for a subset T of P := {1, . . . , p}, we use the notation eT to represent the vector in Rp
having entries with index in T equal to 1, and entries with index in P\T equal to 0. We also use ei as a shorthand
notation for e{i} and e as a shorthand notation for eP .

Consider integers 0 ≤ k1 < k2 < . . . < kr ≤ m and 0 ≤ l1 < l2 < . . . < ls ≤ n. Define M := {1, . . . ,m},
N := {1, . . . , n}, K := {k1, . . . , kr}, and L := {l1, . . . , ls}. We do not require that m or n is positive. When m = 0
(resp. n = 0), we consider M (resp. N ) to be empty.
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We are interested in the logical constraint on binary variables x1, . . . , xm and y1, . . . , yn that requires that if the number
of variables out of x1, . . . , xm that are true belongs to K, then the number of variables out of y1, . . . , yn that are true
belongs to L. Formally, we study

Sm,n(K,L) :=
{

(x, y) ∈ {0, 1}m+n
∣∣ eᵀx ∈ K =⇒ eᵀy ∈ L

}
.

We refer to this set simply as S whenever m, n, K and L are clear from the context. In Proposition 6.1, we obtain a
description of conv(S). To the best of our knowledge, the polyhedral structure of this set has not been investigated
previously.

In studying conv(S), we pose the following assumptions in the remainder of this section.

ASSUMPTION A1: k1 > 0 and l1 > 0.

ASSUMPTION A2: kr < m and ls < n.

We next argue that Assumption (A1) is without loss of generality (wlog). Suppose that k1 = 0. We may de-
fine K ′ = {k1 + 1, k2 + 1, . . . , kr + 1} and consider the set Sm+1,n(K ′, L) whose variables we denote by
(x, xm+1, y). It is simple to verify that Sm,n(K,L) = proj(x,y)

(
Sm+1,n(K ′, L) ∩ H

)
where H is the hyper-

plane {(x, xm+1, y) ∈ Rm × R × Rn |xm+1 = 1}. Since H defines a face of Sm+1,n(K ′, L), it holds that

conv(Sm,n(K,L)) = proj(x,y)

(
conv

(
Sm+1,n(K ′, L)

)
∩ H

)
. Verifying that Assumption (A2) is wlog is similar.

In particular, when kr = m, it suffices to study Sm+1,n(K,L) whose variables we denote by (x, xm+1, y) to ob-
tain the convex hull of Sm,n(K,L) as Sm,n(K,L) = proj(x,y)

(
Sm+1,n(K,L) ∩ H

)
where H is the hyperplane

{(x, xm+1, y) ∈ Rm × R× Rn |xm+1 = 0}.

Theorem 6.1. Under Assumptions (A1) and (A2), conv(Sm,n(K,L)) = X where

X :=

(x, y) ∈ Rm+n

∣∣∣∣∣∣
u ∈ ∆m, u1 = 1, um = 0, u ≥m x
v ∈ ∆n, v1 = 1, vn = 0, v ≥m y

vl1 −
∑s−1
i=1

(
vli+1 − vli+1

)
− vls+1 ≥ uk1

−
∑r−1
i=1

(
uki+1 − uki+1

)
− ukr+1

 .

Proof. Because S is permutation-invariant with respect to variables x but also with respect to variables y, Theorem 2.4
establishes that

conv(S) = proj
(x,y)

{
(x, u, y, v) ∈ R2m+2n

∣∣ (u, v) ∈ conv(S0), u ≥m x, v ≥m y
}
,

where S0 = {(u, v) ∈ {0, 1}m+n |u ∈ ∆m, v ∈ ∆n, eᵀu ∈ K =⇒ eᵀv ∈ L}. We argue next that

conv(S0) = X0 :=

(u, v) ∈ Rm+n

∣∣∣∣∣∣∣∣
u ∈ ∆m, u1 = 1, um = 0 (28.1)
v ∈ ∆n, v1 = 1, vn = 0 (28.2)

vl1 +
∑s−1
i=1

(
vli+1

− vli+1

)
− vls+1

≥ uk1
+
∑r−1
i=1

(
uki+1

− uki+1

)
− ukr+1 (28.3)

 ,

which will conclude the proof.

Given u̇ ∈ ∆m
+ , we define U(u̇) = (u̇k1

− 1) +
∑r−1
i=1 (u̇ki+1

− u̇ki+1) + (0 − u̇kr+1) and θj(u̇) = u̇j − u̇j+1 ≥ 0

for j = 1, . . . ,m − 1. It is clear that
∑m−1
j=1 θj(u̇) = u̇1 − u̇m ≤ 1 and U(u̇) = −1 +

∑r
i=1 θki(u̇). It follows that

U(u̇) ∈ [−1, 0]. In addition, if u̇ ∈ {0, 1}m, we have that U(u̇) ∈ {−1, 0} as θj(u̇) ∈ {0, 1} for j = 1, . . . ,m − 1.
Further, in this case, U(u̇) = 0 if and only if θki(u̇) = 1 for some i ∈ {1, . . . , r}, i.e.,

∑m
j=1 u̇j = ki ∈ K. Similar

results hold for V (v̇) = (v̇l1 − 1) +
∑s−1
i=1 (v̇li+1

− v̇li+1)− v̇ls+1 when v̇ ∈ ∆n
+.

First consider (u̇, v̇) ∈ S0. Because u̇ ∈ ∆m ∩ {0, 1}m, then U(u̇) ∈ {−1, 0}. Further, U(u̇) = 0 if and only if
eᵀu̇ ∈ K. Similarly, we have that V (v̇) ∈ {−1, 0} with V (v̇) = 0 if and only if eᵀv̇ ∈ L. We show that (u̇, v̇) ∈ X0.
There are two cases. If eᵀu̇ 6∈ K, then U(u̇) = −1 and (28.3) is trivially satisfied. If eᵀu̇ ∈ K, then eᵀv̇ ∈ L. Hence,
constraint (28.3) is satisfied as U(u̇) = V (v̇) = 0. We conclude that S0 ⊆ X0, which implies that conv(S0) ⊆ X0 as
X0 is convex being polyhedral.

Second consider any extreme point (ū, v̄) of the polytope X0. We first show that (ū, v̄) ∈ {0, 1}m+n. On the one hand,
assume that (28.3) is not tight at (ū, v̄). Then, at least m + n − 4 among the m + n − 2 constraints of ∆m and ∆n

must be satisfied at equality. Because no more than m− 1 (resp. n− 1) among the constraints of ∆m (resp. ∆n) can
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be satisfied at equality simultaneously in a feasible solution as u1 6= um (resp v1 6= vn), we conclude that ū =
∑m1

i=1 ei
for m1 ∈ {1, . . . ,m− 1} and v̄ =

∑n1

i=1 ei for n1 ∈ {1, . . . , n− 1}. On the other hand, assume that (28.3) is tight at
(ū, v̄). Then, at least m+ n− 5 among the m+ n− 2 constraints of ∆m and ∆n must be satisfied at equality. There
are two cases. In the first, the number of tight constraints in ∆m and ∆n is at least m− 3 and n− 2, respectively. Then
ū =

∑m1

j=1 ej + f
∑m2

j=m1+1 ej where 1 ≤ m1 ≤ m2 ≤ m and f ∈ (0, 1) and v̄ =
∑n1

j=1 ej where 1 ≤ n1 ≤ n− 1.
We claim that m1 = m2. Assume not. Because V (v̄) ∈ {−1, 0} and (28.3) is tight, we also have that U(ū) ∈ {−1, 0}.
It follows that either m1,m2 /∈ K or that m1,m2 ∈ K. In these cases however, consider the solutions ǔ =

∑m2

j=1 ej
and û =

∑m1

j=1 ej . We see that ū = fǔ + (1 − f)û. Solutions ǔ and û also make (28.3) tight, showing that (ū, v̄)

is not an extreme point of X0, yielding a contradiction. We conclude that (ū, v̄) ∈ {0, 1}m+n. A similar argument
shows that, for the second case where the number of tight constraints in ∆m and ∆n is at least m − 2 and n − 3,
respectively, (ū, v̄) ∈ {0, 1}m+n. Now observe that ū ∈ ∆m ∩ {0, 1}m implies that U(ū) ∈ {−1, 0}. Similarly,
v̄ ∈ ∆n ∩ {0, 1}n implies that V (v̄) ∈ {−1, 0}. As constraint (28.3) imposes that V (v̄) ≥ U(ū), we conclude that
eᵀū ∈ K =⇒ eᵀv̄ ∈ L, showing that (ū, v̄) ∈ S0. The above discussion establishes that the extreme points of X0 are
binary vectors that belong to S0. This proves that X0 ⊆ conv(S0).

We next obtain a description of the convex hull of Sm,n(K,L) in the space of original variables by projecting the
formulation we obtained in Proposition 6.1 onto the space of variables x and y. We first observe that the corresponding
projection cone Cm,n(K,L) is described by the inequalities:∑m

p=i αp − α′m − βi−1 + βi − δ±i (K)γ = 0, ∀i = 1, . . . ,m∑n
q=j ᾱq − ᾱ′n − β̄j−1 + β̄j + δ̄±j (L)γ = 0, ∀j = 1, . . . , n

αi ≥ 0, βi ≥ 0, ∀i = 1, . . . ,m
ᾱj ≥ 0, β̄j ≥ 0, ∀j = 1, . . . , n
β0 ≥ 0, β̄0 ≥ 0, γ ≥ 0,

where dual variable αp is associated with constraint
∑p
i=1 ui ≥ maxS⊆N | |N |=p x(S), βp is the dual variable associated

with constraint up − up+1 ≥ 0 for p = 1, . . . , n − 1, β0 is the dual variable associated with constraint 1 − u1 ≥ 0,
βn is the dual variable associated with constraint un ≥ 0, and γ is the dual for the constraint (28.3). We also define
δ±(K) = eK − eK+1 and δ̄± = eL − eL+1.

Given an element (α, α′m, β, ᾱ, ᾱ
′
n, β̄, γ) of Cm,n(K,L), we can construct the valid inequality

m∑
i=1

αi max
S⊆M | |S|=i

{x(S)}+

n∑
j=1

ᾱj max
T⊆N | |T |=j

{y(T )} − α′mx(M)− ᾱ′ny(N) ≤ β0 + β̄0. (28)

Because α and ᾱ are nonnegative, (28) can be expressed as an exponential collection of linear inequalities using the
relationships maxS⊆M | |S|=i{x(S)} ≥

∑
k∈S′ xk, for all S′ ⊆ S with |S′| = i.

In particular, we note that the only component of vectors β and β̄ that occurs in the above inequality is β0 and β̄0.

Because γ is the only variable linking variables (α, α′m, β) and (ᾱ, ᾱ′n, β̄) in Cm,n(K,L) and because in any ray of
Cm,n(K,L) we may assume that either γ = 0 or γ = 1, it is possible to obtain the extreme rays of the cone Cm,n(K,L)
by focusing on the rays of the smaller cones cp(v)∑p

i=r αi − α′p − βr−1 + βr = −vr, ∀r = 1, . . . , p
αi ≥ 0, βi ≥ 0, ∀i = 1, . . . , p
α′p ≥ 0,

where v ∈ Rn.

Theorem 6.2. Vector (α, α′m, β, ᾱ, ᾱ
′
n, β̄, 1) is an extreme ray of Cm,n(K,L) if and only if (α, α′m, β) is an extreme

point of cm(δ±(K)) and (ᾱ, ᾱ′n, β̄) is an extreme point of cn(−δ±(L)). Further, Vector (α, α′m, β, ᾱ, ᾱ
′
n, β̄, 0) is an

extreme ray of Cm,n(K,L) if and only if (α, α′m, β) is an extreme ray of cm(0) and (ᾱ, ᾱ′n, β̄) is an extreme ray of
cn(0).

6.1 Cardinality constraints

For L ⊆ {0, . . . , n}, consider the set

S#
n (L) := {y ∈ {0, 1}n | eᵀy ∈ L} .
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When L = {0, 1, . . . , l}, S#
n (L) models a no-more-than-l cardinality requirement. It is clear in this case that

conv(S#
n (L)) = {y ∈ [0, 1]n | eᵀy ≤ l}. When L is the set of even integers between 0 and n, conv(S#

n (L)) was
obtained in [17]. More generally, conv(S#

n (L)) is described in [9, 24], where it is shown that

conv(S#
n (L)) =

y ∈ [0, 1]n

∣∣∣∣∣∣∣
l1 ≤ eᵀy ≤ ls
(lp+1 − |S|)eᵀSy − (|S| − lp)eᵀN\Sy ≤ lp(lp+1 − |S|),

∀p = 1, . . . , s− 1
∀S ⊆ N with lp < |S| < lp+1,

 .

Observe that S#
n (L) = projy Sm,n(K,L) for any positive integer m if K = {0, . . . ,m}. Proposition 6.1 can therefore

be used to obtain the following description of conv(S#
n (L)). For reasons similar to those justifying Assumptions (A1)

and (A2), it is wlog to impose

ASSUMPTION A3: l1 > 0 and ls < n.

Theorem 6.3. Under Assumptions (A3), conv(S#
n (L)) = X where

X =

y ∈ Rn

∣∣∣∣∣∣∣
v ∈ ∆n, v1 = 1, vn = 0,
v ≥m y
vl1 = 1, vls = 0
vli+1 = vli+1

, ∀i = 1, . . . , s− 1

 .

Proof. For a positive integer m, construct Sm+2,n(K,L) where K = {1, . . . ,m + 1}. We have that S#
n (L) =

projy
(
Sm+1,n(K,L) ∩H ∩H′

)
whereH is the hyperplane {(x, xm+1, xm+2) ∈ Rm × R |xm+1 = 1} andH′ is the

hyperplane {(x, xm+1, xm+2) ∈ Rm × R |xm+2 = 0}. It follows that

conv(S#
n (L)) = conv

(
proj
y

(
Sm+2,n(K,L) ∩H ∩H′

))
= proj

y

(
conv(Sm+2,n(K,L)) ∩H ∩H′

)
.

A description of conv(Sm+2,n(K,L)) is given in Proposition 6.1. Because K = {1, . . . ,m+ 1}, ki+1 = ki + 1 for
i = 1, . . . ,m and r = m+ 1. Then (28.3) reduces to

vl1 +

s−1∑
i=1

(vli+1 − vli+1)− vls+1 ≥ uk1 − ukr+1 = 1. (29)

The constraints of ∆n imply that vl1 ≤ 1, vli+1 − vli+1 ≤ 0 for i = 1, . . . , s− 1 (as li+1 ≥ li + 1), and vls ≥ 0. As
(29) must hold under these conditions, we conclude that (28.3) in fact reduces to vl1 = 1, vls = 0 and vli+1 − vli+1 = 0
for i = 1, . . . , s− 1. Because the resulting formulation of conv(Sm+2,n(K,L)) does not contain constraints linking
variables u and v, projy conv(Sm+2,n(K,L)) is simply obtained by retaining only the constraints involving v, yielding
the result.

6.2 Logical constraints

We now consider the common logical constraint [28] on binary variables x1, . . . , xm and y1, . . . , yn that requires that
if at least k out of x1, . . . , xm are true then at least l out of y1, . . . , yn are true. Formally, we consider

S =⇒
m,n (k, l) =

{
(x, y) ∈ {0, 1}m+n

∣∣ eᵀx ≥ k =⇒ eᵀy ≥ l
}
.

Textbook formulations of this constraint introduce a binary variable z to indicate whether the number of x variables
with true assignment has reached level k. The implication can then be replaced with the following linear constraints
(k − 1) + (m − k + 1)z ≥ eᵀx and eᵀy ≥ lz. A constructive procedure to obtain the facets of conv(S =⇒

m,n (k, l))
is described in [28]. A closed-form description is obtained in [4] using disjunctive programming arguments. Note
that [4] obtained the desired description using the fact that the convex hull of unions of monotone polytopes has a
simple description, see also [5], while we our derivation relies on permutation invariance. For reasons similar to those
justifying Assumptions (A1) and (A2), it is wlog to impose

ASSUMPTION A4: k > 0 and l > 0.
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Theorem 6.4. Under Assumption (A4), conv(S =⇒
m,n (k, l)) = X where

X =

{
(x, y) ∈ Rm+n

∣∣∣∣∣ u ∈ ∆m, u ≥m x, u1 = 1
v ∈ ∆n, v ≥m y, v1 = 1
vl ≥ uk

}
.

Proof. We observe that S =⇒
m,n (k, l) is in fact proj(x,y) (Sm+1,n+1(K,L) ∩H ∩H′) where K = {k, . . . ,m}, L =

{l, . . . , n}, H is the hyperplane {(x, xm+1, y, yn+1) ∈ Rm × R × Rn × R |xm+1 = 0} and H′ is the hyperplane
{(x, xm+1, y, yn+1) ∈ Rm×R×Rn×R | yn+1 = 0}.. Then, ki = k+(i−1) for i = 1, . . . ,m−k+1 and li = l+(i−1)

for i = 1, . . . , n−l+1. Then, the left-hand side of (28.3) reduces to vl1+
∑s−1
i=1 (vli+1−vli+1)−vls+1 = vl−vm+1 = vl1

while its right-hand side reduces to uk1
+
∑r−1
i=1 (uki+1

−uki+1)−ukr+1 = uk−un+1 = uk. Therefore this constraint
takes the form vl ≥ uk Projecting out variables xm+1, yn+1, um+1 and vn+1 from the formulation is then trivial as it
can be verified that for vectors w, z ∈ Rp, (w, 0) ≥m (z, 0) if and only if w ≥m z.

7 Set of rank-one matrices associated with permutation-invariant sets

For a positive integer n and a given set S ∈ Rn, define MS := {(x,X) ∈ Rn ×Mn | X = xxᵀ, x ∈ S}. For each
element (x,X) ∈ MS , it is obvious that rank(X) = 1. Studying this type of sets is particularly important when
constructing valid inequalities for semidefinite relaxations of a non-convex optimization problem. In this section, we
study the case where the base set S is permutation-invariant.

As a motivating example, sparse PCA is to find a sparse vector that maximizes the variance xᵀΣx associated with the
component for a given covariance matrix Σ. A semidefinite relaxation of sparse PCA aims to approximate the following
set

{(x,X) ∈ Rn ×Mn | X = xxᵀ, ‖x‖ ≤ 1, card(x) ≤ K} (30)
for a positive integer K ∈ {1, . . . , n− 1} which can be represented as MS for a permutation-invariant set S = {x ∈
R
n | ‖x‖ ≤ 1, card(x) ≤ K}. Separation problems associated with the above set are known to be NP-hard and hence

their semidefinite relaxations have been considered by relaxing the non-convex constraint X = xxᵀ with a convex
constraint X � xxᵀ. Then, linear valid inequalities in (X,x) are developed by exploring the property that X = xxᵀ.
For example, when x is bounded by a box, one can add McCormick constraints to relax the product terms. The authors
of [11] proposed a cut 1ᵀX1 ≤ K which can be easily obtained by the valid inequality

∑n
i=1 xi ≤

√
K and the

condition X = xxᵀ.

We next show that more valid inequalities can be constructed in a higher dimensional space using the permutation-
invariance of the base set S of MS . To this end, we prove the following proposition.

Theorem 7.1. Suppose S ⊆ Rn is a permutation-invariant set. Let

N =
⋃

P∈Pn

{
(x, u,X,U) ∈ Rn ×Rn ×Mn ×Mn

∣∣∣∣∣ X = xxᵀ, U = uuᵀ,
x = Pu,
u ∈ S ∩∆n

}
.

Then, MS = projx,XN .

Proof. Proof. We first show that MS ⊆ projx,XN . For any arbitrary (x,X) ∈ MS , there exists P ∈ Pn such that
u := P−1x ∈ ∆n. By permutation-invariance of S, u ∈ S and hence u ∈ S ∩∆n. This shows that (x, u, xxᵀ, uuᵀ) ∈
N . We next prove the opposite inclusion. Consider a point (x, u,X,U) ∈ N . Assume x = Pu for some P ∈ Pn.
Since u ∈ S ∩∆n ⊆ S, x ∈ S by permutation-invariance of S. Moreover, X = xxT . Therefore, (x,X) ∈MS .

By Proposition 7.1, it suffices to assume that X = xxᵀ for x ∈ Rn that is a permutation of an element in S ∩∆n when
constructing a valid inequality. For any (x, u,X,U) ∈ N , observe that

X = xxᵀ = (Pu)(Pu)ᵀ = PUP ᵀ

from the relationship x = Pu for a permutation matrix P ∈ Pn. In other words, we can assume that U is the matrix
obtained by permuting columns and the corresponding rows of matrix X . We can derive some valid inequalities based
on this idea. Perhaps, the easiest inequalities we can develop are

trace(X) = trace(U), (31a)
1
ᵀX1 = 1

ᵀU1, (31b)
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On the other hand, since u ∈ ∆n, entries in each row of uuᵀ is in descending order, deriving the following inequalities.

Ui,j ≥ Ui,j+1, 1 ≤ i ≤ n, 1 ≤ j < n. (32)

Similar arguments can be made for column entries, but the inequalities are redundant because of the symmetry of U .

We next generalize (31a) and (31b) using majorization. Observe that (31a) does not account for the fact that the diagonal
entries of U and X are identical up to permutation. Therefore, we consider the following tighter constraint:

diag(U) ≥m diag(X). (33)

Notice that (31a) is implied by (33) by definition of majorization. Since (33) models the permutahedron with respect to
a base vector diag(U), it provides the most compact linear description for the relationship that diag(U) is a permutation
of diag(X). We recall from Theorem 2.5 that a majorization inequality of the form u ≥m x for u ∈ ∆n is modeled
using linear inequalities in a higher dimensional space. Similarly, (33) is linearly representable because diag(U) ∈ ∆n.

An extension for (31b) is obtainable from the fact that the vector of row sums of X is a permutation of that of U . For
any matrix Y ∈Mm×n, define RY as an m-dimensional vector whose ith component is the sum of ith row of Y . Then,
the following majorization inequality is valid.

RU ≥m RX . (34)

Similarly, (34) is linearly representable because RU ∈ ∆n. By symmetry of U and X , majorization condition for
vectors of column sums is redundant.

We next consider a special case where u ≥ 0. Denote the sum of the k largest elements of x by sk(x), and the ith row of
a matrix Y by Yi. For a fixed pair p, q ∈ {1, . . . , n}, take the sums of q largest components of each rows of U and X:sq(U1)

...
sq(Un)

 ,
sq(X1)

...
sq(Xn)

 .
Under the assumption that X = PUP ᵀ for some permutation matrix P , it is clear that one of the above vectors is a
permutation of the other. We next consider the sum of p largest components of those two vectors and

sp ((sq(U1), . . . , sq(Un))) ≥ sp((sq(X1), . . . , sq(Xn))). (35)

We next argue the linear representability of (35). The left-hand side of (35) is simply written as
∑p
i=1

∑q
j=1 Uij . Using

the dual arguments that we used in Theorem 2.5, we represent (35) as∑p
i=1

∑q
j=1 Uij ≥ pr +

∑n
i=1 ti

sq(Xi) ≤ ti + r, i = 1, . . . , n
ti ≥ 0, i = 1, . . . , n

(36)

Observe that the function sq(Xi) is a convex function and it is placed in the "lower" side of an inequality. Therefore,
(36) is a convex representation. By applying the similar procedure to model sq(Xi) for i = 1, . . . , n, we can obtain a
linear representation for (35). It is clear that (35) holds with equality when p = n. Unlike linear representation of a
majorization inequality, we do not add the constraint

sn ((sq(U1), . . . , sq(Un))) = sn((sq(X1), . . . , sq(Xn))) (37)

because the right-hand side is still written in ordered variables of the form (Xi)[j] and hence it is not a linear equality.
Moreover, it is not convex representation because of the equality.

Note that we used two stages of "sum-of-k-largest" modeling techniques to obtain linear representation of (35) in the
previous discussion. We next present that a linear representation can be obtained using a transportation problem and its
dual in one stage. To this end, we introduce the following lemma:

Lemma 7.1. For given w ∈ R
n
+ and p, q ∈ {1, . . . , n}, the optimal value of the following linear program is

(
∑p
i=1 w[i])(

∑q
j=1 w[j]):

max
∑n
i=1

∑n
j=1 wiwjxij

s.t.
∑n
j=1 xij ≤ q, i ∈ {1, . . . , n}∑n
i=1 xij ≤ p, j ∈ {1, . . . , n}∑n
i=1

∑n
j=1 xij ≤ pq

0 ≤ xij ≤ 1, i, j ∈ {1, . . . , n}

(38)
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Proof. Proof. Without loss of generality, we assume that wi = w[i] for all i = 1, . . . , n. Let z∗ be the maximum of
(38). First, define x′ as x′ij = 1 if i ≤ p and j ≤ q and 0 otherwise. Then, x′ is feasible and the objective function
value is (

∑p
i=1 wi)(

∑q
j=1 wj). This shows that z∗ ≥ (

∑p
i=1 wi)(

∑q
j=1 wj). Next, we consider the dual formulation

of (38) as follows:

min q

n∑
i=1

αi + p

n∑
j=1

βj + pqγ +

n∑
i=1

n∑
j=1

δij

s.t. αi + βj + γ + δij ≥ wiwj i, j ∈ {1, . . . , n} (39a)
αi ≥ 0, βj ≥ 0, γ ≥ 0, δij ≥ 0 i, j ∈ {1, . . . , n} (39b)

Since both (38) and (39) are feasible, z∗ is the minimum of (39) by strong duality. By convention, we define wn+1 = 0.
Define (α′, β′, γ′, δ′) ∈ Rn ×Rn ×R×Mn as follows:

α′i = max{wiwq+1 − wpwq, 0}, i = 1, . . . , n
β′j = max{wp+1wj − wpwq, 0}, j = 1, . . . , n
γ′ = wpwq

δ′ij =

{
wiwj − γ′ − α′i − β′j if i ≤ p and j ≤ q
0 Otherwise

We first prove the feasibility of the point. Nonnegativity of α, β, and γ is clear. To prove nonnegativity of δ, consider
i ≤ p and j ≤ q. Assume first that wiwq+1 − wpwq ≥ 0 and wp+1wj − wpwq ≥ 0. Then,

δ′ij = wiwj − wpwq − (wiwq+1 − wpwq)− (wp+1wj − wpwq)
= (wi − wp)(wj − wq) + wi(wq − wq+1) + wj(wp − wp+1) ≥ 0.

We next assume that either wiwq+1 − wpwq < 0 or wp+1wj − wpwq < 0. Without loss of generality, assume that
wiwq+1 − wpwq < 0. Then, δ′ij = wiwj − wpwq − (wp+1wj − wpwq) = wj(wi − wp+1) ≥ 0. We next show that
(α′, β′, γ′, δ′) satisfies (39a). For i ≤ p and j ≤ q, (39a) holds with equality by definition of δ′ij . We next consider the
case where i > p or j > q. Without loss of generality, assume that i > p so that α′i = 0. Then,

α′i + β′j + γ′ + δ′ij = β′j + γ′ = max{wp+1wj − wpwq, 0}+ wpwq ≥ wp+1wj − wpwq + wpwq ≥ wiwj .

Finally, the objective function value at (α′, β′, γ′, δ′) is

q

n∑
i=1

α′i + p

n∑
j=1

β′j + pqγ′ +

n∑
i=1

n∑
j=1

δ′ij

= q

p∑
i=1

α′i + p

q∑
j=1

β′j + pqγ′ +

p∑
i=1

q∑
j=1

(wiwj − γ′ − α′i − β′j)

=

p∑
i=1

q∑
j=1

wiwj =

(
p∑
i=1

wi

) q∑
j=1

wj


This shows that z∗ ≤ (

∑p
i=1 wi)

(∑q
j=1 wj

)
, concluding that z∗ = (

∑p
i=1 wi)

(∑q
j=1 wj

)
.

An alternative linear representation of (35) can be obtained using the dual formulation in the proof of Lemma 7.1. First
of all, the left-hand side of (35) is a constant

∑p
i=1

∑q
j=1 Uij . Then, we replace its right-hand side with the objective

function of the dual (39) and add inequalities constraints (39a) and (39b) in the formulation where the term wiwj must
be replaced with |X|ij . Notice that we cannot replace the right-hand side with the objective function of (38) because
(38) is a maximization problem while the dual is applicable because it is a minimization problem.

This idea is extended to model the the largest sum of the p1-by-p2-by-. . . -by-pk subtensor of a rank-k nonnegative
tensor w ⊗ w ⊗ · · · ⊗ w where 1 ≤ p, q, r ≤ n for some w ∈ Rn+.

In the remainder of the section, we present semidefinite programming relaxations for sparse PCA.

7.1 An SDP relaxation for sparse PCA

Principal Component Analysis is a well-known dimension reduction technique in statistical analysis. A principal
component is a linear combination of independent variables and typically it means the coefficient vector of the linear
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combination. The first principal component is a unit principal component which maximizes the variance and it is the
eigenvector corresponding to the largest eigenvalue of the covariance matrix. Even though the first principal component
explains the most variance of the data, it is hard to interpret because typically most coefficients are nonzero. Sparse
PCA is introduced to resolve this issue by finding linear combinations with only a few explantory variables. That is, it
extends this classic PCA by adding a sparsity contraint which allows only a certain number of explanatory variables are
used to principal components.

Formally, let Σ be the covariance matrix of the data set and let x be a coefficient vector for a principal component. Then,
the following optimization problem find the first sparse principal component that contains at most K nonzero entries:

max xTΣx
s.t. ‖x‖ ≤ 1,

card(x) ≤ K
(sparse PCA)

where x ∈ Rn, K is a positive integer with 1 < K < n, and card(x) is the number of nonzero components of x.
Observe that the feasible set of sparse PCA is NK

‖·‖ where ‖ · ‖ is L2-norm. sparse PCA is a non-convex optimization
problem because the feasible set is nonconvex due to the sparsity constraint. On the other hand, since the objective
function is convex, it can be seen as a convex maximization problem over conv(NK

‖·‖) provided that an optimal solution
to the relaxation can be transformed to an alternate sparse solution. As we have already seen, the convex hull of the
feasible set is represented as follows:

conv(NK
‖·‖) =

x
∣∣∣∣∣∣∣
‖u‖ ≤ 1,
u1 ≥ · · · ≥ uK ≥ 0,
uK+1 = · · · = un = 0,
u ≥m |x|

 . (40)

Once a description of conv(NK
‖·‖) is obtained, sparse PCA can be reformulated as a convex maximization problem over

a compact convex set.

We next present a positive semidefinite relaxation for (sparse PCA). The most commonly used (and, to the best of our
knowledge, only) SDP relaxation for sparse PCA was introduce in [11] as follows:

max trace(ΣX)
s.t. trace(X) ≤ 1,

1
ᵀ|X|1 ≤ K,
X � 0.

(41)

On the other hand, we develop the following SDP relaxation by adding the majorization constraints that we introduced
earlier in this section:

max trace(ΣX)

s.t. trace(U) ≤ 1 (42a)
trace(|X|) = trace(U), (42b)
1
ᵀ|X|1 = 1

ᵀU1, , (42c)
Ui,j ≥ Ui,j+1 ≥ 0, 1 ≤ i ≤ n, 1 ≤ j < n, (42d)
diag(U) ≥m diag(|X|) (42e)

RU ≥m R|X| (42f)
p∑
i=1

q∑
j=1

Uij ≥ sp (sq(|X1|), . . . , sq(|Xn|)) , 1 ≤ p ≤ q ≤ n (42g)

‖u‖ ≤ 1 (42h)
u1 ≥ · · · ≥ uK ≥ 0 (42i)
uK+1 = · · · = un = 0 (42j)
u ≥m |x| (42k)
Uij = 0 i > K or j > K (42l)
X � xxᵀ (42m)
U � uuᵀ (42n)
X = Xᵀ, U = Uᵀ (42o)
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(42a) are from the norm constraints ‖u‖ ≤ 1. The constraints that we introduced earlier in this section are in (42b) -
(42k). Notice that nonnegativity of entries of U is added in (42d). (42l) is added because the last n−K components
of u are zeros and hence any entries outside the K-by-K top-left submatrix are zeros. Lastly, (42m) and (42n) are
relaxation of the condition X = xxᵀ and U = uuᵀ and these can be easily modeled using Schur complements. In (42e),
we use diag(X) rather than diag(|X|) because (42m) implies that diag(X) ≥ 0. Furthermore, a natural constraint
trace(X) ≤ 1 is omitted because it is implied by (42a) and (42b). For the sake of exposition, we omit the modeling
detail for (42e) - (42g) and (42k) in the formulation.

Theorem 7.2. All the constraints in (41) are implied by constraints in (42).

Proof. Proof. First, we already showed that trace(X) ≤ 1 is implied by (42a) and (42e). Positive semidefiniteness of
X is from the fact that X � xxᵀ � 0. We next show that 1ᵀ|X|1 ≤ K is implied. By (42l), we only consider the
K-by-K upper-left submatrix of U . Let UK,K be the submatrix and let 1K is the K-dimensional vector of ones. Define
f(x) := xᵀUK,Kx. Since U � 0 implies that UK,K � 0, f is convex. Furthermore, f(αx) = α2f(x) for any scalar α.
Therefore,

1
ᵀU1 = 1

ᵀ
KUK,K1K = f(1K) = f

(∑K
i=1 ei

)
= f

(
K
∑K
i=1

1
K ei

)
= K2f

(∑K
i=1

1
K ei

)
≤ K2 1

K

∑K
i=1 f(ei) = K trace(U) ≤ K

where the first inequality follows from the convexity of f . On the other hand, (42f) implies that 1ᵀU1 = 1
ᵀ|X|1.

Therefore, 1ᵀ|X|1 = 1
ᵀU1 ≤ K.

7.2 Computational experiments for sparse PCA

We next report our computational results. We refer to the formulation (42) by the upper-sum relaxation and the
formulation except the constraints (42g) by the row-sum relaxation. We report test results for the row-sum and upper-
sum relaxations in Table 1 and 2. z∗E represents the global optimal value for the sparse PCA and z∗D represents the
optimal value for SDP relaxation (41). We denote the optimal value for the row sum relaxation by z∗rs and that for the
upper-sum relaxation by z∗us. We used SCS version 2.0.2 [26, 27], a large-scale convex conic solver, to solve SDPs in
the experiments. To measure the relative tightness of a relaxation when compared to (41), we calculate “gap closed” as(

z∗D − z∗SDP
z∗D − z∗E

)
× 100.

where z∗SDP is z∗rs or z∗us.

The output status Solved/Inaccurate indicates that SCS could not determine the solution within the default numerical
tolerance, but returned a solution using a relaxed tolerance.

7.2.1 pitprops problem

pitprops [16] is one of the most commonly used problems for sparse PCA algorithms. The instance has 13 variables
and 180 observations. Table 1 shows the test results for cardinality K = 3, . . . , 10. The numbers in the parantheses
represent”Solved/Inaccurate” SCS output.

K z∗E z∗D z∗rs Gap closed (%) z∗us Gap closed (%)
3 2.475 2.522 2.495 57.86 (2.475) 100.00
4 2.937 3.017 2.967 62.83 (2.948) 87.15
5 3.406 3.458 3.407 97.97 (3.406) 100.00
6 3.771 3.814 3.771 100.00 (3.771) 100.00
7 3.996 4.032 3.996 100.00 (3.996) 100.00
8 4.069 4.145 4.073 94.22 (4.072) 95.48
9 4.139 4.206 4.139 100.00 (4.139) 100.00

10 4.173 4.219 (4.177) 91.32 (4.177) 91.41
Average 88.025 Average 96.76

Table 1: Optimal values and gaps closed for the test problem pitprops

Observe that the row-sum (resp. upper-sum) relaxation reduces the gaps of (41) by more than 88% (resp. 96%),
returning global optimal solutions for three (resp. five) problems.
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7.2.2 Experiments with randomly generated matrices

We next report test results for randomly generated covariance matrices. Random matrices are generated as follows:

1. Choose a random integer m ∈ {1, . . . , n} for the number of nonzero eigenvalues of the matrix by setting
m = dnUe where U ∼ U(0, 1).

2. Generate m random vectors vi ∈ Rn ∼ N (0, In), i = 1, . . . ,m for rank-1 matrices.

3. Generate m positive random eigenvalues λi ∼ U(0, 1), i = 1, . . . ,m.

4. Then, construct the desired random covariance matrix as Σ =
∑m
i=1 λiviv

ᵀ
i .

The tests are performed for problems with size n ∈ {4, . . . , 10} and cardinalities K ∈ {2, . . . , bn/3c}. Note that the
reported results are based on the test problems with SCS outputs status “Solved” or “Solved/Inaccurate”. See
Table 2. We observe that our SDP relaxations improve the gaps of the SDP relaxation (41) by more than 90% (on
average).

Average gap closed (%)
n K # Test Problems z∗rs z∗us
4 2 100 94.993 95.459
5 2 100 94.184 96.689
6 2 100 91.454 95.163
7 2 50 88.892 93.179
7 3 50 90.285 93.086
8 2 50 88.689 92.481
8 3 20 93.434 95.053
9 2 20 87.928 94.963
9 3 20 78.115 87.835

10 2 20 75.478 85.015
10 3 20 85.036 88.827
10 4 20 77.327 81.311

Overall Average 90.180 93.559
Table 2: Test results for randomly generated covariance matrices

8 Conclusion

In this paper, we present an explicit convex hull description of permutation-invariant sets and applications of the results
to various important sets/functions in optimization. The construction of the convex hull is based on the fact that a
permutation-invariant set is a union of permutahedra and the generating vectors in ∆ = {x ∈ Rn | x1 ≥ · · · ≥ xn} of
the permutahedra lie in a set whose convex hull is obtainable. We then discover a variety of applications for which
the results can be used. We present an extended formulation for the convex hull of permutation-invariant norm balls
constrained by a cardinality requirement. This result is extended to the sets of matrices that is characterized by their
singular values. On the semidefinite programming side, we study sets of rank-one matrices whose generating vectors
lie in a permutation-invariant set. We use majorization inequalities in the space of generating vectors to construct
valid inequalities for the convex hull in the matrix space. As a motivating problem, we construct tight semidefinite
programming relaxation for the sparse principal component analysis and report computational results that show that our
relaxation reduces more than 90% of gaps generated by the classical relaxation proposed by [11].
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