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Abstract
This paper presents new evidence on the returns to schooling based on an interactive fixed

effects framework that allows for multiple unobserved skills with associated prices that are
potentially time-varying. Skills and prices are both allowed to be correlated with schooling.
The modeling approach can also accommodate individual-level heterogeneity in the returns
to schooling. The framework thus constitutes a substantive generalization of most existing
approaches that assume ability is unidimensional and/or returns are homogeneous. Our em-
pirical analysis employs a unique panel dataset on earnings and education over the period
1978-2011 based on respondents from the Survey of Income and Program Participation (SIPP)
linked with tax and benefit data from the Internal Revenue Service (IRS) and Social Secu-
rity Administration (SSA). Our preferred specification yields a point estimate of the average
marginal returns to schooling of about 2.8-4.4 percent relative to ordinary least squares and
two stage least squares estimates which lie in the range 7.7-12.7 percent. A decomposition of
the aggregate least squares bias shows that the omitted ability component is responsible for a
larger fraction of the bias relative to the heterogeneity component. Finally, our heterogeneity
analysis suggests larger returns for individuals born in more recent years, the presence of
sheepskin effects, and considerable within-group heterogeneity.
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1 Introduction

The human capital hypothesis (Becker, 1962) states that in a competitive market, higher education

leads to higher human capital and therefore higher wages. This hypothesis has led to decades of

empirical discussion on the average marginal return to education based primarily on the Mincer

regression (Mincer, 1974). The debate has centered around the omitted ability bias, with the

assumption being that ordinary least squares (OLS) estimates of the growth rate of earnings with

schooling are likely to be overstated due to the positive association between earnings and ability

as well as ability and schooling (Griliches, 1977). In an attempt to correct for the potential upward

bias, a large body of empirical work has emerged over the past four decades that adopted various

econometric strategies to account for the endogeneity of schooling which could potentially deliver

a reliable estimate of the returns to schooling. Such strategies include the use of instrumental

variables (IV) estimates (e.g., Angrist and Krueger, 1991), utilizing within family variation in

schooling (e.g., Ashenfelter and Krueger, 1994), and the use of observable proxies for ability (e.g.,

Heckman, Stixrud, and Urzua, 2006). However, each strategy suffers from its own set of issues

and collectively they produce conflicting and sometimes surprising results (Card, 2001; Heckman,

Lochner, and Todd, 2006; Caplan, 2018). This has led to a call for new panel data approaches

utilizing large administrative datasets (Heckman, Lochner, and Todd, 2006; Altonji, 2010).

This paper adopts an interactive fixed effects or common factor framework for estimating

the returns to schooling that allows for multiple unobserved skills with associated prices that are

potentially time-varying. The skills are represented by the factor loadings while their prices are

represented by the common factors. Additive individual and/or time fixed effects are obtained as

special cases of this framework. Skills and prices are both allowed to be correlated with schooling

which addresses the endogeneity of the latter without resorting to external instruments or proxies

for ability. The modeling approach can also accommodate individual-level heterogeneity in the

returns to schooling. The framework thus constitutes a substantive generalization of most existing
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approaches that assume ability is unidimensional and/or returns are homogeneous. Moreover,

it allows us to quantify two important sources of bias: one from ignoring the interactive fixed

effects structure (the ability bias) and the other from ignoring potential parameter heterogeneity.

Estimation is carried out using the methods developed by Bai (2009), Pesaran (2006), and Song

(2013) that facilitate consistent estimation of the growth rate of earnings with schooling and enable

statistical inference via asymptotically valid standard errors.

Using a common factor structure to model the earnings function is, however, not new. Hause

(1980) employs an interactive effects framework (referring to it as “the fine structure of earnings”)

to decompose the covariance matrix of earnings time series into ability and on-the-job training

components and evaluate the empirical significance of the latter. Heckman and Scheinkman (1987)

employ a multifactor model for earnings in order to test the hypothesis of uniform pricing across

sectors of the economy. More recently, Carneiro et al. (2003) use the common factor structure

as a dimension reduction tool to model the dependence across unobservable ability components

and estimate counterfactual distributions of outcomes while Heckman, Stixrud, and Urzua (2006)

show that a low-dimensional vector of latent cognitive and non-cognitive skills modeled using a

factor structure explains a variety of behavioral and labor market outcomes (see also Heckman

et al., 2017). Westerlund and Petrova (2017) apply the interactive fixed effects framework to the

returns to schooling and find smaller returns than OLS. However, their analysis was an empirical

illustration of the performance of Pesaran’s (2006) common correlated effects estimator under

asymptotic collinearity, and leaves much room for work.1 Our contribution differs from these

studies in that we exploit the time series variation in schooling over the sample period as well

as the high-dimensional nature of the panel dataset to simultaneously address the twin issues

of heterogeneity in returns to schooling and the endogeneity of schooling thus enabling us to

disentangle the biases associated with ignoring one or both of these features.

1This includes the use of a larger dataset, additional estimators (Bai, 2009; Song, 2013), a variety of specifications
to account for heterogeneity and experience, relation of the results to both the IV and the ability proxy literature, and
accommodation of individual-level heterogeneity in the returns to schooling, all of which we address in this paper.
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Our empirical analysis employs a unique panel dataset on earnings and education over the

period 1978-2011 based on respondents from the Survey of Income and Program Participation

(SIPP) linked with tax and benefit data from the Internal Revenue Service (IRS) and Social Secu-

rity Administration (SSA). Combining nine SIPP survey panels and administrative earnings data

provides a panel dataset that is of high quality, has a long time dimension, and includes a large

number of individuals. Administrative data on earnings is advantageous relative to survey data due

to rising measurement error and non-response in survey data (Abowd and Stinson, 2013; Meyer

et al., 2015). This is particularly relevant for estimating the returns to schooling, given that the

nature of earnings misreporting in survey data tends to vary with earnings and education levels

(Chenevert et al., 2016; Cristia and Schwabish, 2009; Pedace and Bates, 2000). The linked dataset

has a much larger time dimension and cross-section dimension than in the few existing panel

studies on returns to schooling, which usually rely on the Panel Study of Income Dynamics (PSID)

or the National Longitudinal Study of Youth (NLSY) (e.g., Angrist and Newey, 1991; Ashworth et

al., 2017; Koop and Tobias, 2004; Westerlund and Petrova, 2017).2

Previewing our results, we first replicate the well established finding in the literature that

the IV estimate of the growth rate of earnings due to schooling is larger than the corresponding

OLS estimate, both using cross-section and panel data. The IV estimate is based on using the

quarter of birth interacted with the year of birth as instruments following Angrist and Krueger

(1991). Next, our interactive fixed effects estimates are found to be considerably smaller than

the OLS estimates, regardless of whether a pooled or heterogenous model is estimated. Our

preferred specification based on models with heterogeneous coefficients yields a point estimate

of the average marginal returns to schooling of about 2.8-4.4 percent relative to OLS and two stage

least squares (2SLS) estimates which lie in the range 7.7-12.7 percent. While both omitted ability

and heterogeneity biases contribute to the overall OLS bias, a decomposition of the aggregate least

2Two other recent examples of panel analysis use administrative data from Norway and Sweden (Bhuller et al.,
2017; Nybom, 2017).
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squares bias shows that the omitted ability component is responsible for a larger fraction of the bias

relative to the heterogeneity component. Overall, our results are more similar to the ability proxy

literature, which finds smaller returns than OLS, than the IV literature, although we find even larger

positive bias and smaller marginal returns. Lastly, we analyze both across-group and within-group

heterogeneity in the returns to schooling. Although we find minimal evidence of heterogeneous

returns across race, Hispanic status, or foreign born status, our results indicate that returns are

larger for individuals born in more recent years. Our findings are also suggestive of “sheepskin

effects” and considerable heterogeneity within demographic groups and education levels.

The rest of the paper is organized as follows. Section 2 discusses issues related to the existing

econometric strategies in the literature. Section 3 introduces the interactive effects framework

including a brief description of the associated estimation methods. Section 4 details the adminis-

trative data used to conduct the empirical analysis. Section 5 presents the estimated specifications

and results. Section 6 concludes. Appendices provide detailed derivations and additional empirical

results, including robustness to the inclusion of higher order terms for schooling and experience.

2 Issues in the Existing Literature

In order to motivate the approach taken in this paper, it is useful to first highlight the issues

associated with the different econometric strategies that have been employed in the literature to

correct for the omitted ability bias inherent in OLS estimates of the returns to schooling. These

issues have turned out to be of considerable importance from an empirical standpoint and have

contributed to a general lack of consensus about the appropriate methodology to adopt when

estimating the returns to schooling. We first discuss the two main approaches that are based on

utilizing cross-sectional data: the IV approach and the ability proxy approach. This is followed by

an assessment of existing panel data studies including a discussion of the relative advantages of

our approach which should further help delineate our contribution to the literature.
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The IV approach is based on exploiting natural variation in the data caused by exogenous

influences on the schooling decision. For instance, the seminal study of Angrist and Krueger

(1991) uses an individual’s quarter of birth (interacted with year of birth or state of birth in

some specifications) as an instrument for schooling based on the observation that compulsory

schooling laws tend to lead individuals born earlier in the year to have less schooling relative to

those born later in the year. Surprisingly, however, the IV estimates were found to be consistently

larger than the OLS estimates thereby presenting an empirical puzzle regarding the interpretation

of the IV estimates (see Card, 2001, Table II, for a summary of this literature). One potential

explanation for the larger IV estimates is in terms of the Local Average Treatment Effect (LATE)

on a selected sample (Imbens and Angrist, 1994). That is, if the instrument has a larger impact

on individuals with higher marginal returns to schooling, the IV procedure will tend to produce an

overestimate of the average marginal returns to education.3 Heckman, Lochner, and Todd (2006)

and Heckman, Urzua, and Vytlacil (2006), however, point out that the LATE interpretation of the

IV estimate assumes away heterogeneity in the response of schooling choices to instruments, via

the monotonicity assumption. Card (2001) discusses other explanations for the puzzle including

attenuation bias in the OLS estimates due to measurement error in schooling, short term credit

constraints and specification search bias.4,5 Carneiro and Heckman (2002) argue, using AFQT as

a measure of ability, that the observed pattern of results can simply be a consequence of using

poor or invalid instruments that are either only weakly correlated with schooling or correlated with

ability. Heckman, Lochner, and Todd (2006) conclude in their survey of the literature that the IV

approach is of limited use in uncovering a reliable estimate of the returns to schooling.6

3Note, the LATE issue arises when the marginal returns are heterogeneous, which could occur either when
the relationship between earning and schooling is linear, but the coefficients are individual specific; or when the
coefficients are homogeneous, but schooling enters the model nonlinearly.

4Card (2001) notes that measurement error in schooling cannot explain the observed difference in OLS and IV
estimates while Carneiro and Heckman (2002) show that IV can exceed OLS even in the absence of credit constraints.

5Oreopoulos (2006) approximated the average treatment effect by looking at compulsory schooling policy change
that affected a large group of people in U.K. and suggested that even when the sample is not subject to selection
problems and credit constraints, the IV estimate is still larger than OLS and therefore the empirical puzzle remains.

6As one of the referees pointed out, criticism over the validity of the IV strategy depends on the choice of the
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The ability proxy approach employs observable proxies for ability in order to mitigate the im-

pact of the ability bias. Common proxies for cognitive ability include GPA, AFQT scores and other

components in the ASVAB tests while those for non-cognitive ability include the Rotter Locus of

Control Scale which measures the degree of control individuals feel they possess over their life and

the Rosenberg Self-Esteem Scale which measures perceptions of self-worth (Heckman, Stixrud,

and Urzua, 2006).7 Heckman et al. (2017) provide a comparison of standard OLS estimates to

estimates controlling for ability proxies using Bartlett cognitive and non-cognitive factors, and find

that the latter are about 20-50 percent smaller, depending on the specification. Similar reductions

are reported by Ashworth et al. (2017) in comparing the basic Mincer regressions to regressions

that include ability proxies and actual experience using the NLSY panel data.8 A major challenge

facing this literature is that the ability proxies, particularly those measuring non-cognitive ability or

“soft skills” such as conscientiousness, conformity, self-esteem, etc., are far from perfect resulting

in biased estimates of the schooling effect (Heckman, Stixrud, and Urzua, 2006).9 Our paper

contributes to the literature by providing a rigorous framework that allows the data to speak

regarding the importance of multi-dimensional abilities without relying on imperfect proxies. Our

preferred specification based on models with heterogeneous coefficients suggests a reduction in

the average marginal returns to schooling between 44-64 percent relative to OLS.

In contrast to the cross-section methods, the panel data approach identifies the effect of

schooling based on time-series variation within individuals. Angrist and Newey (1991) and Koop

and Tobias (2004) use panel data from the NLSY to estimate the returns to schooling (more pre-

cisely, the percentage growth rate of earnings due to schooling) although their modeling approaches

are different. Both studies, however, assume that individual fixed effects can effectively capture

instrument so that making general statements about the IV estimates of the returns to schooling is difficult.
7While GPA is commonly used as a measure of cognitive ability, there is evidence indicating that GPA captures a

mix of cognitive and non-cognitive skills (Humphries and Kosse, 2017).
8Based on reviewing the earlier evidence, Caplan (2018, Chapter 3) suggests that cognitive ability bias is between

20-30 percent while non-cognitive ability bias is between 5-15 percent. He interprets the ability bias in the literature
as a lower bound on the true bias due to the imperfect measure of abilities, especially the non-cognitive abilities.

9Even cognitive ability measures, such as AFQT scores, are subject to criticism (Polachek et al., 2015).
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the potential endogeneity of schooling. Angrist and Newey (1991) employ a standard panel data

framework with homogeneous coefficients where unobserved heterogeneity is controlled for using

individual and time fixed effects. They find that the fixed effects estimates are roughly twice

as large as the OLS estimates which runs counterintuitive to the notion that ability bias tends to

overstate the OLS returns and suggests that individual fixed effects are not sufficient to control

for the potential upward bias. Koop and Tobias (2004) address the issue of cross-sectional hetero-

geneity in returns adopting a Bayesian framework to characterize the nature of such heterogeneity.

Comparing results across a wide variety of specifications, they find strong evidence in favor of

models that allow for heterogeneous slopes. Our modeling approach is considerably more general

than those adopted in these studies in that we allow for multidimensional abilities with possibly

time-varying prices as well as cross-sectional heterogeneity in the growth rate of earnings with

schooling. In addition, our empirical analysis uses a linked survey-administrative dataset which

offers important advantages over survey-based data.

A potential drawback of the panel data approach is that it requires a sample of individuals

with continuous earnings while increasing schooling. This may include, for example, traditional

students who also work while obtaining a bachelors degree or individuals who return to school later

in life, whether to finish an uncompleted degree or for additional degrees. This sample could be

different from the traditional idea of a student who completes degrees consecutively and does not

work while in school. Setting aside sample selection effects, there could also be issues comparing

time-series earnings before, during, and after schooling, since earnings before or during schooling

could be part-time or seasonal work and not truly reflect an individual’s earning potential (Card,

1995; Lazear, 1977). That said, we believe these concerns are mitigated somewhat by the facts that:

(1) we do replicate well-established results in terms of the absolute and relative magnitude of OLS

and IV estimates from the cross-section literature; (2) we set annual minimum earnings restrictions

equal to the federal minimum wage multiplied by 800 hours, following the criterion adopted in

Koop and Tobias (2004); (3) we find similar sample statistics and cross-section estimates if we
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instead use a sample that does not require continuous earnings while in school; and (4) other

research has shown that the student population that works during school is large (Bacolod and

Hotz, 2006; Bound et al., 2012; Carnevale et al., 2015; Hotz et al., 2002), and is thus an important

population itself. Furthermore, unlike the cross-section approach, the use of panel data allows us

to formally test for heterogeneity in the returns to schooling as well as explore its nature across

and within subgroups.

3 Empirical Framework

This section presents the interactive fixed effects framework that forms the basis of our empirical

analysis aimed at estimating the growth rate of earnings with years of schooling. Conditional on

the common factor structure embedded in the framework that represents multiple skills with time

varying prices, one can further derive not only the aggregate OLS and IV biases but also provide

a decomposition of the biases in terms of their omitted ability and heterogeneity components.

Section 3.1 lays out the modeling framework including a description of the alternative estimation

approaches. Section 3.2 discusses the intuition underlying the omitted ability and heterogeneity

biases while Appendix A outlines the derivations and details regarding the computation of the two

sources of bias. A potential explanation for the pattern of results obtained from the empirics can

be given based on these derivations.

3.1 The Interactive Fixed Effects Model

The general interactive fixed effects model with heterogeneous coefficients is specified as

yit = ci + sitβi +w′itγi + vit (1)

vit = λ
′
i ft +uit (2)
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where yit and sit represent, respectively, the (log of) annual earnings and the years of schooling

completed for person i = 1, ...,N at period t = 1, ...,T , and wit is a vector of observable charac-

teristics that influence wages and are potentially correlated with education (e.g., experience). We

include a set of person fixed effects ci to control for time-invariant person characteristics such as

gender and race. The parameter βi measures the percentage change in annual earnings for person

i due to an additional year of schooling. This parameter does not necessarily represent an internal

rate of return to schooling unless the only costs of schooling are earnings foregone, and markets

are perfect (Heckman, Lochner, and Todd, 2006). The error term vit is composed of a common

component (λ ′i ft) and an idiosyncratic component (uit). Here λi represents a (r× 1) vector

of unmeasured skills (factor loadings), such as innate abilities, while ft is a (r× 1) vector of

unobserved, possibly time-varying, prices (or common factors) of the unmeasured skills.10 Both

loadings and the factors are potentially correlated with the observables (sit ,wit). The number of

common components r is assumed unknown. The object of interest is the average marginal return

[E(βi)] in the population. Note that while the returns to each of the skill components (λ ′i ft) are

identified, the skills and their prices are not separately identified.11 That is, the estimated factors

and their loadings only estimate a rotation of the underlying true parameters and so cannot be

given a direct economic interpretation. Unlike Heckman, Stixrud, and Urzua (2006), our paper

does not attempt to distinguish between the role of cognitive and non-cognitive skills in explaining

the behavior of earnings. Rather, we are interested in estimating the rate of growth of earnings with

schooling employing the interactive fixed effects structure as a device to control for the different

components of ability that may affect earnings and are potentially correlated with schooling.

Various panel data specifications used in the literature can be obtained as special cases of

(1) and (2). The standard panel data model with person and time fixed effects considered by

10While we refer to the factor loadings as skills/abilities, there are other time-invariant determinants with possibly
time-varying prices, such as motivation and persistence, that can be captured by the factors loadings as well.

11For an arbitrary (r× r) invertible matrix A, we have FΛ′ = FAA−1Λ′ = F∗Λ∗′, so that a model with common
factors F = ( f1, ..., fT )

′ and loadings Λ = (λ1, ...,λN)
′ is observationally equivalent to a model with factors F∗ =

( f ∗1 , ..., f ∗T )
′ and Λ∗ = (λ ∗1 , ...,λ

∗
N)
′ where F∗ = FA and Λ∗ = ΛA−1′.

9



Angrist and Newey (1991) is obtained by setting βi = β , γi = γ, λi = λ . Koop and Tobias (2004)

consider a restricted version of (1) and (2) that allows heterogeneity in returns to schooling but

assumes that the endogeneity of schooling (i.e., the ability bias) is fully accounted for by the

individual fixed effects ci. Thus, their model does not allow for multiple skill components with

time varying prices. We consider estimating model (1) and (2) using two alternative econometric

procedures: the principal components approach (Bai, 2009; Song, 2013) and the common corre-

lated effects approach (Pesaran, 2006). We now briefly describe each of these methods.

3.1.1 The Principal Components Approach

Bai (2009) advocates an iterative principal components approach that treats the common factors

and their loadings as parameters which are jointly estimated with the regression coefficients as-

suming cross-sectional homogeneity of the latter. Under both large N and large T, the estimator is

shown to be
√

NT -consistent and asymptotically normal under mild conditions on the idiosyncratic

components that allow for (weak) correlation and heteroskedasticity in both dimensions. To ensure

that the asymptotic distribution is centered around zero, a bias corrected estimator is proposed. Our

empirical analysis employs the bias corrected estimator which we refer to as the interactive fixed

effects (IFE) estimator.

Let xit = (sit
′,wit

′)′ and x̃it = xit − T−1
∑

T
t=1 xit with ỹit defined analogously. Letting φ =

(β ′,γ ′)′, the IFE estimator is obtained by iteratively solving the following pair of equations:

φ̂
[
{ ft}T

t=1,{λi}N
i=1
]

=

(
N

∑
i=1

T

∑
t=1

x̃it x̃′it

)−1( N

∑
i=1

T

∑
t=1

x̃it(ỹit−λ
′
i ft)

)
(3)

ỹit− x̃′itφ = λ
′
i ft + ũit (4)

In particular, given the factors and loadings, we compute φ̂ from (3) and given φ , we compute

the factors and loadings from (4) using principal components. Two choices of initial values are

employed to start the iteration and the one that leads to the lower sum of squared residuals upon
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convergence is chosen as the final set of estimates. The first choice sets ft = 0 for all t in (3) while

the second sets φ = 0 in (4). The tolerance level for the convergence of the sum of squared

residuals was set at 10−10 and convergence was achieved within 500 iterations across all estimated

specifications.

Song (2013) develops a heterogeneous version of the IFE estimator that allows the regression

coefficients to be unit-specific. The estimator is obtained by taking the cross-sectional average of

the individual specific IFE estimates and is shown to be
√

N-consistent for the average return in

the population. We refer to this estimator as the IFEMG (MG denoting mean group) estimator.

Both the IFE and IFEMG estimators require a choice on the number of common factors. Bai

(2009) proposes estimating the number of factors employing the information criterion procedure

of Bai and Ng (2002). Specifically, the number of factors is obtained by minimizing the criterion

IC(k) = ln

[
(NT )−1

N

∑
i=1

T

∑
t=1

û2
it(k)

]
+ k
(

N +T
NT

)
g(N,T )

over k ∈ [0,kmax], where kmax is a prespecified upper bound. The residuals {ûit(k)} are obtained

from principal components estimation assuming k factors and g(N,T ) is a penalty function. When

estimating a pooled model as in Bai (2009), the IFE estimate is used to construct the residual

series while estimating a heterogeneous version as in Song (2013) entails the use of the individual

level IFE estimate. We set kmax = 10 and use g(N,T ) = ln
( NT

N+T

)
which corresponds to the

“ICp1” criterion in Bai and Ng (2002).

3.1.2 The Common Correlated Effects (CCE) Approach

Pesaran (2006) proposes to proxy for the unobserved common factors ft using cross-sectional av-

erages of the dependent and independent variables, i.e., unlike the principal components approach,

the factors are treated as nuisance parameters rather than parameters of interest. Estimation is

based on augmenting the regression (1) with the cross-sectional averages and does not require
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knowledge of the number of factors. Two estimators are suggested: (1) the common correlated

effects mean group (CCEMG) estimator which allows for heterogeneous coefficients and is ob-

tained by estimating person-specific time series regressions using OLS and taking the average of

the person-specific estimates; (2) the common correlated effects pooled (CCEP) estimator which

pools the observations over the cross-section units and achieves efficiency gains when the slope

parameters are the same across units.12

Based on a random coefficients formulation for the regression coefficients as well as the

factor loadings, both estimators are shown to be
√

N-consistent and asymptotically normal as the

cross-section dimension (N) and the time series dimension (T ) jointly diverge to infinity. The

finite sample performance of both estimators can be sensitive to a particular rank condition which

requires that the number of factors does not exceed the total number of observed variables (see the

Monte Carlo evidence in section 7 of Pesaran, 2006).

Pesaran (2006, p.1000) also suggests a two-step approach to estimation that involves com-

bining the CCE and principal components approaches. For the model specified in (1) and (2), the

first step entails obtaining the residuals

v̂it = yit− ĉi− sit β̂i−w′it γ̂i

where (ĉi, β̂i, γ̂i)
′ denote the individual level CCE estimates. The factors are then estimated by

principal components treating the residuals as observed data where the number of factors is again

selected based on the information criterion discussed in section 3.1.1. In the second step, the factor

estimates (say { f̂t}T
t=1) are then directly used as regressors in the regression equation

yit = ci + sitβi +w′itγi +λ
′
i f̂t +ξit (5)

12The coefficients of the cross-sectional averages are, however, allowed to be individual-specific in both the pooled
and heterogeneous specifications.
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Given that the consistency of β̂i hinges on the validity of the aforementioned rank condition, we

replace β̂i with the CCEMG estimate when computing the first step residuals. The estimate of

βi obtained from OLS estimation of (5) will be referred to as the “two-step CCE” estimate and

the corresponding mean group version as CCEMG-2. For the pooled analog of (1), the first step

residuals are obtained using the CCEP estimate and the resulting estimate is referred to as CCEP-2.

Our empirical analysis reports both the one and two-step CCE estimates. A potential advantage of

the two-step approach is that the second-step estimate is based on factors estimated by principal

components instead of observable proxies and is therefore possibly less sensitive to the fulfillment

of the rank condition.13

3.2 Omitted Ability and Heterogeneity Biases

In the interactive effects environment, there are at least two potential sources of bias that can

arise in panel OLS/IV estimation of the returns to schooling. The first is the omitted ability bias

that emanates from ignoring the common factor structure (2). While OLS estimation treats the

ability components as part of the error term leading to endogeneity of the schooling variable, the

IV estimator can be subject to bias if the instruments are inappropriate in that they are correlated

with the factor structure. The second source of bias arises from estimating a pooled specification

when the true regression coefficients are heterogeneous. In practice, the two biases may reinforce

or offset each other depending on their signs. The interactive effects framework allows us to

separately estimate the bias associated with each of the two sources.

Appendix A provides analytical expressions for the aforementioned sources of bias including

conditions under which one would expect a given pattern in the relative magnitude of the regression

parameter estimates. These expressions can then be employed to estimate the biases using the

13The rank condition is potentially very relevant in this application, given that our empirical analysis based on
panel data includes a small number of observed variables (2-3, depending on the specification). Note that we only
include cross-sectional averages of the earning and schooling variables in the CCE approach, given that age controls
are equivalent to the inclusion of a deterministic time trend (see Appendix B for details).
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interactive fixed effects estimates of the factor structure. Comparison of the component-specific

OLS and IV biases allows us to isolate components that are responsible for exacerbating the

IV bias relative to OLS from those where the instruments are effective at mitigating the bias.

For instance, the instruments may reduce the bias associated with an ability component that is

negatively correlated with schooling (e.g., high school skills) while worsening the bias associated

with a component positively correlated with schooling (e.g., college skills).14

4 Data

4.1 Linked Survey-Administrative Data

Linked survey-administrative data come from the U.S. Census Bureau Gold Standard File (GSF)

which links respondents from the SIPP with tax and benefit data from the IRS and SSA.15 The

linked dataset includes respondents’ survey information from the SIPP for the years they were in

the survey and annual tax and benefit information that ranges from 1978-2011 for some variables

and 1951-2011 for others.16 This allows us to construct a panel dataset with annual earnings,

annual years of schooling, and other covariates. Annual earnings comes from the SSA’s Detailed

Earnings Record (DER), which is based on W-2 records for employed workers and Schedule C

records for self-employed workers, including deferred earnings, and is available from 1978-2011.

We construct a longitudinal years of schooling variable using the educational history information

in the SIPP, which includes not just the highest level of schooling completed, but also the year each

level was completed. More details on the construction of this variable can be found in Appendix

C.
14We borrow the language of “high school skills” versus “college skills” from Heckman, Lochner, and Todd (2006,

p. 390). One can also think of it as “mechanical skills” versus “cognitive/non-cognitive skills” (Prada and Urzua,
2017).

15We use version 6.0 of the GSF. Outside researchers can access a synthetic version of the GSF, known as SIPP
Synthetic Beta. Researchers can then have their results validated on non-synthetic data. More information is available
in Benedetto et al. (2018).

16Nine SIPP panels are linked: 1984, 1990, 1991, 1992, 1993, 1996, 2001, 2004, and 2008.
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Administrative data on earnings is advantageous to survey data due to rising measurement

error and non-response in survey data (Abowd and Stinson, 2013; Meyer et al., 2015). Previous

work has shown that earnings data from surveys appears to be overstated at the bottom of the

earnings distribution and understated at the top (Chenevert et al., 2016; Cristia and Schwabish,

2009; Pedace and Bates, 2000). Chenevert et al. (2016) also found that survey earnings data is

overstated for lower education levels and understated for higher education levels. These find-

ings have potential implications about the reliability of survey data for estimating the returns to

schooling. Several of the aforementioned studies on the merits of administrative versus survey

data analyze the same SIPP and SSA DER data that we use (Abowd and Stinson, 2013; Chenevert

et al., 2016; Meyer et al., 2015).

Linked SIPP-administrative data therefore provides a unique panel dataset of education and

earnings that is of high quality, has a long time dimension, and includes a large number of indi-

viduals. Most studies have relied on cross-section analysis (e.g., Angrist and Krueger, 1991; Card,

1995) or short panels (e.g., Carneiro et al., 2003; Carneiro and Heckman, 2002; Carneiro et al.,

2011; Cunha et al., 2005). Studies that use longer panel data typically use either the PSID (e.g.,

Westerlund and Petrova, 2017) or the NLSY (e.g., Angrist and Newey, 1991; Ashworth et al.,

2017; Koop and Tobias, 2004). The linked SIPP-administrative data has several advantages over

the PSID and NLSY, including larger sample sizes, due to the combination of many SIPP panels;17

more accurate earnings data, due to the removal of survey mis-reporting, non-response, and top-

coding; less attrition, because longitudinal earnings data come from administrative records rather

than repeated survey responses; and a longer time dimension for earnings, due to administrative

earnings records that cover many years.

Heckman, Lochner, and Todd (2006) conclude in their survey of the literature that the

solution to improving the estimation of returns to schooling lies in rich panel data and new econo-

17Most panel studies in the literature analyze approximately 1,000-2,000 individuals, with the extremes being 888
in Westerlund and Petrova (2017) and 3,695 in Cunha et al. (2005).
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metric approaches. The use of linked survey-administrative data addresses the former of those

recommendations. It also addresses the latter recommendation: the use of rich panel data allows

for an interactive fixed effects framework which cannot be applied to cross-section or short panel

data (see Altonji, 2010 for further discussion of these points).

4.2 Sample Selection and Summary Statistics

The main sample of analysis was selected based on eight selection criteria: (1) males; (2) age

16-65 during the entirety of 1978-2011; (3) at least 27 years of age at the time of their SIPP survey;

(4) not currently enrolled in school at the time of their SIPP survey; (5) no missing information

for variables included in the analysis; (6) positive earnings each year from 1978-2011; (7) meets

annual minimum earnings thresholds; (8) at least one change in years of schooling during 1978-

2011. The first five criteria are typical in the returns to schooling literature. The sample is restricted

to males to analyze a population that historically is consistently and strongly attached to the labor

market. The age range is limited to 16-65 to focus on prime working years. Criteria (3)-(5) select

individuals who are most likely to have complete and accurate educational histories.

Criteria (6)-(8) are required due to the panel data approach. Positive earnings in each year

is required to have a balanced panel sample. However, work while enrolled in school may often

be part-time work. Thus, earnings may be artificially low during school, which could lead to

biased estimates of the return to schooling from panel datasets. To ensure that we are analyzing

earnings that reasonably represent individuals’ full earning potential, we further limit the sample to

individuals who meet minimum earnings thresholds during each and every year. We set the annual

minimum earnings equal to the federal minimum wage multiplied by 800 hours, following the

criterion adopted in Koop and Tobias (2004).18 Finally, we further limit the sample to individuals

18Koop and Tobias (2004) have annual data on wages, hours, and weeks. Their sample restrictions to identify
individuals whose earnings represent full earnings potential include limiting to individuals who work at least 30 weeks
in the year, work at least 800 hours in the year, and have a wage of at least $1. We are forced to restrict based on
annual earnings amounts due to the lack of annual weeks and hours worked information.
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with at least one change in years of schooling so that we can estimate person fixed effects models.19

Each of these criteria is typical in the panel data literature on estimating the returns to schooling:

Angrist and Newey (1991), Koop and Tobias (2004), and Westerlund and Petrova (2017) analyze

individuals who have positive earnings and increase their schooling at the same time, while Koop

and Tobias (2004) also use minimum earnings and work thresholds.

Nonetheless, it is reasonable to be concerned that the final panel sample may not be repre-

sentative of a typical individual’s work and school experience. To investigate this, Table 1 shows

summary statistics for not only the main sample of analysis, but also shows how the summary

statistics change as we sequentially add the selection criteria to obtain our final sample. Panel A

shows the balanced panel sample. Panel B shows a cross-section sample which is a subset of the

panel sample for year 1990. We include both because, while our main results are based on a panel

sample, we also provide some cross-section results below. Column (1) shows a baseline sample

that applies criteria (1)-(5) listed above.20 This sample has 47,500 individuals. Before applying

the remaining selection criteria, we first show a comparative sample in column (2). This column

restricts the baseline sample to individuals who have positive earnings every year after finishing

their schooling. Whereas our restriction of positive earnings each year from 1978-2011 is required

for the panel analysis, this restriction is more consistent with the cross-section literature.21 This

19We checked the sensitivity of the results to an additional restriction that removed individuals with an earnings
observation in the top one percent of the sample. We chose not to include this restriction in the main sample because
(1) we do not have a precedent in the returns to schooling literature for what top percent to remove; (2) one advantage
of using the administrative data rather than survey earnings data is the lack of top-coding; and (3) the results are
similar. These results are available upon request.

20We show age in years in this table for demonstration, but for the analysis below we followed Angrist and Krueger
(1991) and constructed age-in-quarters as the individual’s age-in-quarters at the time of their SIPP survey. That is,
the within-birthyear-birthquarter variation due to the differences in which quarter individuals were born and which
quarter they were interviewed allows cross-section IV specifications that include birth year fixed effects, age controls,
and the quarter-based IVs. When we moved to the panel setting, we calculated the age-in-quarters variable for their
non-survey years by subtracting/adding four for each additional year away from the survey year for consistency and
for the sake of estimating similar panel 2SLS specifications.

21The cross-section literature often relies on “potential experience” as a proxy for work experience when estimating
returns to schooling, which explicitly builds in an assumption of positive earnings each year after finishing schooling:
the proxy assumes that individuals are always either in school or working, but never both, and measures experience
as age−years of schooling−6. The cross-section literature typically also uses a similar sample selection criteria by
analyzing individuals with positive earnings and not currently enrolled in school.
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restriction decreases the sample by more than half, from 47,500 individuals to 22,000 individuals.

Based on Panel A, the sample has higher average earnings (+$13,800), more average years of

schooling (+0.73 years), lower average age (-0.63 years), and has higher means for the fraction

White, non-Hispanic, native born, and married.22

Column (3) imposes the criterion that individuals must have positive earnings each year

from 1978-2011. This only further decreases the sample from 22,000 individuals to 18,500.

The average earnings (+$320) and average years of schooling (-0.09 years) do not change much

compared the effect of imposing positive earnings after finishing schooling. The average age

increases (+0.68 years) and the fraction White, non-Hispanic, native born, and married continues

to increase. Column (4) imposes the annual minimum earnings criterion. This decreases the

sample from 18,500 individuals to 12,000. The only particularly notable changes arising from

this restriction are higher annual earnings (+$4,290), as expected, and increased mean age (+0.94

years). Finally, column (5) imposes the criterion of at least one change in schooling during

1978-2011. This decreases the sample from 12,000 individuals to 3,600. The notable changes

in sample means arising from this restriction are mean years of school (+0.62 years) and mean age

(-1.83 years).23 In summary, comparing the balanced panel and minimum earnings restrictions in

columns (3) and (4) to the comparative sample in column (2), these criteria do not further decrease

the sample size dramatically compared to the decrease from the baseline sample when imposing

the common assumption in the literature of positive earnings after finishing school. Comparing

the final sample in column (5) to the comparative sample, the only differences in the summary

statistics are relatively small changes in average annual earnings due to the minimum earnings

threshold (+$4,580), years of school (+0.53 years), age (-0.21 years), and small increases in the

fraction White, non-Hispanic, native born, and married.

22The large standard deviation for annual earnings is due to the fact that the earnings data is very skewed to the
right.

23The relatively large changes in sample size and mean age are due to losing individuals who never complete
high school and also older individuals who already completed their schooling by 1978, both of whom would have no
observed changes in years of schooling.
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To further alleviate concerns that our main sample may not be representative, we begin our

analysis below by estimating cross-section specifications based on both our main sample in column

(5) of Panel B and the comparative sample in column (2) in order to replicate the well-known

pattern of OLS/2SLS results from the literature. Furthermore, the main panel sample is used

to generate OLS and 2SLS estimates, in addition to estimates from specifications based on an

interactive fixed effects structure. Thus, to the extent that estimates of the return to schooling are

larger or smaller based on panel analysis, all of the estimates should be affected by this, such that

comparing estimates from OLS/2SLS with estimates from interactive fixed effects specifications

still illustrates the effect of allowing for multiple unobserved skills whose prices can vary over

time.

5 Empirical Results

The empirical results are organized into five subsections. Section 5.1 presents the set of spec-

ifications estimated that differ according to whether cross-section or panel data are employed,

whether the regression parameters are allowed to be heterogeneous, and whether interactive fixed

effects are incorporated. Section 5.2 reports the cross-section estimates which replicate the robust

empirical finding in the literature that the IV estimate of the returns to schooling exceeds the

OLS estimate. The former is based on using the quarter of birth interacted with year of birth as

instruments following the seminal paper by Angrist and Krueger (1991). Our choice of IV is driven

by the fact that it is one of the most widely used in the literature and the only available one in our

dataset, although we acknowledge its limitations with respect to both relevance and exogeneity

(Bound et al., 1995; Buckles and Hungerman, 2013; Barua and Lang, 2016). Section 5.3 presents

the panel OLS, 2SLS, and interactive fixed effects estimates obtained by pooling the data across

cross-section units assuming homogeneous parameters. Section 5.4 contains results for models that

allow heterogeneity in the returns to schooling. Section 5.5 details the bias estimates from both
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pooled and heterogeneous models. Finally, Section 5.6 conducts a more in-depth analysis of the

nature and degree of heterogeneity by examining the distribution of returns for various subgroups

of the population.

5.1 Estimated Specifications

We estimate a total of seven specifications that are summarized in Table 2. We group the specifi-

cations as follows:

• Group 1 [Specification 1]: Cross-section OLS and 2SLS regressions of log annual earnings

on schooling to verify the “IV > OLS” result commonly found in empirical studies. We

estimate the specification

yi = c+ siβ +aiρ1 +a2
i ρ2 +ui

where ai denotes the age of individual i. The age variables are included to account for the

actual experience (we discuss this issue further below).

• Group 2 [Specifications 2-3]: Standard panel data specifications that include person or time

fixed effects to control for unobserved heterogeneity. When person fixed effects are included,

it takes the form

yit = ci + sitβ +aitρ1 +a2
itρ2 +uit (6)

where ait denotes the age of individual i at period t. We also estimate specifications with

time instead of person fixed effects. Angrist and Newey (1991) consider a specification of

the form (ignoring demographic controls)

yit = ci +δt + sitβ + peitρ1 + pe2
itρ2 +uit

where peit denotes potential experience and is computed as peit = ait − sit − 6, where they
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define sit as the highest grade completed. They estimate a reduced form schooling effect

(expressed as a function of sit and ait) based on the observation that the effect of schooling

conditional on potential experience is not identified. We present a derivation in the Appendix

B which shows that the effect of actual experience can be accounted for by including age and

its square as controls as in (6).

• Group 3 [Specifications 4-5]: This group contains specifications that include interactive

fixed effects while assuming that the regression coefficients are homogeneous. The nesting

model takes the form

yit = ci + sitβ +aitρ1 +a2
itρ2 +λ

′
i ft +uit

We also estimate specifications with time instead of person fixed effects.

• Group 4 [Specifications 6-7]: This group consists of specifications where the slope param-

eters are allowed to be individual specific. The general specification is given by

yit = ci + sitβi +aitρ1i +a2
itρ2i +λ

′
i ft +uit (7)

We also estimate specifications when the interactive fixed effects are excluded (OLSMG).

We consider the specification shown in (7) with person and interactive fixed effects, age

controls, and individual specific parameters to be our preferred specification because it is the

most flexible version and also accounts for experience as discussed in Appendix B.

Our empirical findings are robust to the inclusion of quadratic schooling and/or quartic age

variables (Murphy and Welch, 1990; Cho and Phillips, 2018) for all specifications described above.

See Appendix D1 for details. We have also estimated specifications 1 and 3 with demographic

controls including race, Hispanic status, foreign born status, marital status, state of residence
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during the SIPP survey and birth year. The results are very similar and available upon request.

5.2 Cross-Section Estimates

Columns (1)-(4) of Table 3 present the cross-section OLS and 2SLS estimation results. Columns

(1)-(2) report findings based on the final sample as summarized in Table 1, Panel B, column (5).

OLS yields an estimated effect of schooling of about 9.2 percent while the corresponding 2SLS

point estimate, using the interactions of quarter of birth with year of birth as instruments, is about

13.4 percent. A similar pattern of results is observed in columns (3)-(4) for the comparison sample

without the earnings-in-school restriction as described in Table 1, Panel B, column (2), with the

2SLS point estimate exceeding the OLS point estimate by about 45 percent.

Overall, these findings are in accordance with the literature summarized in Card (2001)

which indicates OLS estimates generally range from 5 to 10 percent, while 2SLS estimates gen-

erally range from 10 to 16 percent; and demonstrates the robustness of the “IV>OLS” result

across different datasets as well as different instrument sets. For instance, the seminal study by

Angrist and Krueger (1991) finds, based on the 1920-29 birth cohort using data on men from the

1970 Census, an OLS estimate of about 7 percent and a 2SLS estimate of about 10 percent when

controlling for age and its square, race, marital status and urban residence.

5.3 Pooled Estimates

The results from OLS and 2SLS estimation using panel data over 1978-2011 are presented in Table

3, columns (5)-(7). Similar in spirit to the cross-section analysis, the OLS point estimates are

apparently smaller than the 2SLS point estimates across specifications. In addition to parameter

estimates, column (5)-(7) also report the results of Pesaran’s (2015) CD test for the presence of

cross-section dependence applied to the residuals for each estimated specification.24 In all cases,

24The test is based on estimated pairwise correlation coefficients between the pooled OLS/2SLS residuals for each
pair of cross-section units. The test has a standard normal asymptotic distribution under the null hypothesis of no
cross-section dependence.
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the test provides evidence against no cross-section dependence (at the 1% level) which further

motivates the use of the interactive fixed effects estimators.

Table 4 reports the results from estimating pooled specifications with interactive fixed effects.

The estimators included are the IFE, CCEP and CCEP-2 estimators. Irrespective of whether

one controls for interactive effects using principal components or cross-section averages of the

observed variables, the point estimates are smaller in magnitude than the OLS and 2SLS estimates

reported in Table 3. For instance, the IFE point estimate with time fixed effects is about 2.6

percent while the corresponding OLS and 2SLS estimates are about 10.5 percent and 12.7 percent,

respectively. Under the assumption that the interactive effects specification represents the true

model, the pattern of results suggests that the OLS and 2SLS estimates are both upward biased,

with the magnitude of the 2SLS bias exceeding the OLS bias. This is consistent with the premise

that the IV approach suffers from flawed instruments that are correlated with unobserved abilities

or skills, which the interactive fixed effects specifications can account for. The CCEP point

estimates are slightly larger than the IFE estimates reflecting the difference in how the unobserved

common factors are accounted for in the two approaches. However, the CCEP-2 estimates that

employ the estimated factors are closer to the IFE estimates.

5.4 Mean Group Estimates

Table 5 presents results from estimating the specifications 6-7 in Table 2 that allow the slope pa-

rameters to be individual-specific. In addition to the CCEMG, CCEMG-2 and IFEMG estimators,

we also include the OLSMG estimator that entails taking the average of the individual specific time

series OLS regressions of log earnings on a constant, age controls, and schooling. Note that a mean

group 2SLS estimate cannot be computed since the instruments are time-invariant. To confirm the

presence of heterogeneity, Table 5 also reports the results from conducting two slope homogeneity
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tests recently proposed by Ando and Bai (2015) and Su and Chen (2013).25 Both tests provide

evidence against the null of slope homogeneity at the 1% significance level.

Consistent with the foregoing pooled results, when the interactive effects are ignored, the

OLSMG point estimate of the return to schooling is larger (7.8 percent). The one-step and two-step

CCE approaches yield similar estimates of about 4.4 and 4.1 percent, respectively, which is larger

relative to the IFE point estimate of the average marginal returns to schooling (2.8 percent). Given

that the mean group estimates exceed the corresponding pooled estimates for all three approaches,

we should expect a negative correlation between the individual level estimate β̂i and the weight

on individual i′s return ωi according to the heterogeneity bias analysis in Appendix A2. Indeed,

the IFE-based correlation was estimated to be -0.003, while the corresponding one and two-step

CCE correlation was estimated as -0.005 and -0.017, respectively. The pattern of findings for the

estimated schooling effect obtained from the heterogeneous factor models therefore suggest that

ignoring potential heterogeneity is likely to induce an downward bias in the parameter estimates.

We also computed the CD test for cross-section dependence based on the OLSMG estimate and

found evidence against no cross-section dependence for both specifications at the 1% level.26

5.5 Bias Estimates

As discussed in Appendix A1, the interactive fixed effects estimates can be used to obtain estimates

of the OLS and 2SLS biases associated with each of the skill components.27 The top three panels

of Table 6 show the biases corresponding to the first four common factors for each of the IFE,

CCEP and CCEP-2 estimates. The contribution of additional factors to the total bias (reported in

column 5) is marginal in all cases. For all three estimation approaches, the aggregate 2SLS bias

25The Ando and Bai (2015) test is based on the (scaled) difference between the individual level estimates and the
IFEMG estimate while the Su and Chen (2013) test is based on the Lagrange Multiplier (LM) principle that utilizes
IFE residuals computed under the null of slope homogeneity. Both tests have a standard normal asymptotic null
distribution. We refer the reader to the original articles for details.

26The results are available upon request.
27We investigate an alternative interpretation of the factor structure in Appendix D2.
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exceeds the OLS bias across specifications, consistent with the findings reported in Tables 3 (panel

results) and 4. For instance, the aggregate OLS bias with year fixed effects using the IFE approach

accounts for about 75 percent of the estimated OLS effect of schooling (Table 3, column 6). The

corresponding aggregate 2SLS bias accounts for about 80 percent of the estimated 2SLS effect of

schooling (Table 3, column 7). Similar magnitudes are obtained using the CCE approaches.

The disaggregate bias estimates reveal some interesting patterns. First, the leading common

component is the major contributor to the aggregate OLS bias, accounting for at least 56 percent

of the bias across specifications/estimators and nearly all of the bias when year fixed effects are

used to control for unobserved heterogeneity. In contrast, the first two common components are

important contributors to the 2SLS bias, with the first component being relatively more important.

Notably, there is some evidence suggesting negative bias components emerged in both OLS and

2SLS cases. The negative bias components can be interpreted as the presence of mechanical

skills that are negatively correlated with schooling but make a positive contribution to earnings

(Heckman, Lochner, and Todd, 2006; Prada and Urzua, 2017). Finally, it is useful to note that

the 2SLS estimator is mostly successful at ameliorating the bias associated with the common

components which only make a negligible contribution to the total bias (i.e., components other

than the first two), at the expense of aggravating the bias in the two leading components (the

exception being factor skill 1 and 4 using the IFE estimates with year fixed effects). These results

show that, assuming an underlying interactive factor structure, the consistent “IV >OLS” finding

in the literature could be due to the use of instruments that actually worsen the ability bias.

As in the pooled case, we compute the biases associated with the OLSMG estimate using the

CCEMG, CCEMG-2 and IFEMG estimates of the common structure. The findings are reported

in the bottom three panels of Table 6. The first common component is responsible for roughly 50

percent of the aggregate bias using the CCE mean group estimates and nearly all of the bias using

the IFEMG estimate. In any case, the aggregate bias is very large: the aggregate OLSMG bias

accounts for up to 64 percent of the estimated OLSMG effect of schooling in Table 5, depending
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on the particular estimator used to control for interactive effects.

Finally, since the interactive effects framework allows for both individual slope heterogeneity

and cross-sectional dependence modeled through a common factor structure, it is possible to obtain

estimates of the biases emanating from each of the two sources. We can use the decomposition

β̂POLS− β̂IFEMG =
(

β̂POLS− β̂IFE

)
+
(

β̂IFE − β̂IFEMG

)
, where β̂POLS denotes the OLS estimate

assuming a homogeneous slope parameter. The first term in the decomposition may be interpreted

as the bias arising from ignoring the common factor structure while the second term denotes

the bias from ignoring potential parameter heterogeneity. The results are shown in Figure 1.

Based on the IFE results, we find β̂POLS − β̂IFEMG ' 4.9 percentage points, β̂POLS − β̂IFE '

5.7 percentage points, β̂IFE − β̂IFEMG ' −0.8 percentage points. A similar calculation using

the one-step CCE estimates yields β̂POLS− β̂CCEMG ' 3.3 percentage points, β̂POLS− β̂CCEP '

3.9 percentage points, β̂CCEP− β̂CCEMG '−0.6 percentage points. For the two-step CCE method,

we obtain β̂POLS− β̂CCEMG−2 ' 3.6 percentage points, β̂POLS− β̂CCEP−2 ' 5.4 percentage points,

β̂CCEP−2− β̂CCEMG−2 '−1.8 percentage points. For all three estimation approaches, the omitted

ability bias captured using the interactive fixed effects structure appears to be the more important

contributor to the total bias of the least squares estimator.

5.6 Heterogeneity Analysis

This section examines the extent of heterogeneity in individual-level returns. We focus on the

differences between the OLS and factor model (FM, henceforth) estimates pertaining to distribu-

tional characteristics of the individual returns, and differences in mean returns across and within

subgroups.28 Most studies in the literature assume that the return to schooling is the same for

all individuals, but there are exceptions (Harmon et al., 2003; Henderson et al., 2011; Koop and

Tobias, 2004; Li and Tobias, 2011). The results for heterogeneity across and within subgroups

discussed below are most comparable to the results from Henderson et al. (2011). They use cross-

28We also investigate the characteristics associated with extreme returns, and the results are available upon request.
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section nonparametric kernel regression methods to study heterogeneity in returns and summarize

the heterogeneity across and within subgroups, but their method does not address omitted ability

bias.

5.6.1 Distribution of Individual Returns

Figure 2 plots the distribution of individual returns for each estimator based on kernel density

plots.29 There are clearly large differences in returns across individuals. Most of the density

associated with the heterogeneous OLS model falls between approximately a negative 50 percent

return and a positive 50 percent return. The FMs clearly shift the distribution to the left, which is

consistent with evidence that the FMs are removing positive ability bias from the OLS estimates.

The FM estimates place greater density immediately around the modal return, which is illustrated

by the height of the density plots compared to OLS.

The most striking result from the figure is that each of the estimators shows a considerable

fraction of individuals with negative returns to schooling. Overall, 39.2 percent of individuals have

negative returns in the heterogeneous OLS model, 46.2 percent in the heterogeneous IFE model,

42.8 percent in the heterogeneous CCE model, and 44.2 percent in the heterogeneous CCE-2 model

as shown in Table 5. These percentages are larger than the estimate in Henderson et al. (2011), who

find that 15.2 percent of individuals who are White have negative returns to schooling. Heckman

et al. (2017) and Prada and Urzua (2017), who use ability proxies from the NLSY to address ability

bias, appear to find fractions of negative returns between the estimate in Henderson et al. (2011)

and our estimates.

5.6.2 Across-Group Heterogeneity

Table 7 reports the mean and variance of the individual returns separately by several subgroups:

race (White, Black, other race), Hispanic status, foreign born status, birth cohort (born before 1950,

29The kernel density plots are based on a standard normal (Gaussian) kernel with a bandwidth of 0.5.
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born 1950-1954, born 1955-1959, born after 1959), and highest education level completed.30,31

Mean returns for individuals who are non-White are statistically tested against the mean for in-

dividuals who are White. For the other subgroups, the mean for each group is statistically tested

against the mean for the group listed directly above it within each panel of the table. Based on

the OLSMG model, the mean return to schooling is statistically larger for (1) individuals who are

White compared to Black; (2) for individuals born in later birth cohorts; (3) individuals with a

high school degree compared to some college; (4) individuals with a bachelor’s degree compared

to some college; (5) for individuals with a bachelor’s degree compared to a graduate degree.

Mean individual returns from the FMs are generally smaller than those from the OLSMG

model for every subgroup, which is consistent with the main results discussed in the previous

sections. Further, the FM estimates show there are no statistically significant differences by race.

Similar to the OLSMG results, the FM estimates indicate the largest mean return to schooling for

individuals who ultimately stop at high school, and the next largest mean returns for individuals

whose highest achievement is a bachelor’s, and then a graduate degree.

The statistically larger returns for more recent birth cohorts, found across all four hetero-

geneous models, is consistent with evidence that returns to schooling have risen over time (Card

and Lemieux, 2001). In contrast to Henderson et al. (2011), which suggests diminishing marginal

returns to years of schooling at least until graduate school, both OLSMG and FM results are more

suggestive of “sheepskin effects”, i.e., if the value of additional years of school is partly related to

the value of degree attainment rather than knowledge obtained in each year, then returns may be

larger for individuals who complete bachelor’s and graduate degrees than for individuals who drop

out of college (Hungerford and Solon, 1987; Jaeger and Page, 1996; Layard and Psacharopoulos,

30The CCE model from Pesaran (2006) makes a random coefficients assumption on the individual-level returns.
This assumption only affects the CCE standard errors and therefore analysis of the mean and variance of individual-
level returns by particular characteristics is feasible without violating assumptions of the model.

31Due to the limited sample size, the results of non-white, Hispanic, and foreign born individuals should be
interpreted with caution. It is possible that these groups in our sample have unique attributes and are not representative
of the rest of the population or that we lack the statistical power to detect significant differences.
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1974).

5.6.3 Within-Group Heterogeneity

The heterogeneous models also allow for the analysis of heterogeneity within subgroups. Table

7 shows the variance of the individual returns within each subgroup. The FM estimates show

mostly larger variance than OLSMG for every subgroup. Both FM and OLSMG estimates show

interesting patterns of the relative variance across subgroups that are worth noting: (1) The results

generally show larger variance for more recent birth cohorts; (2) Evidence also suggests larger

variance for individuals who only obtain a high school degree than any other education level.

Table 8 reports the 25th, 50th, and 75th percentiles of the distribution of individual returns by

subgroup. The FM estimators generally show smaller returns at each percentile, again consistent

with previous results. The difference between the 25th and 75th percentiles is often larger for

OLSMG than the FMs. This appears inconsistent with the larger variance associated with the

FMs in Table 7 . However, this can be reconciled by analyzing the distributional plot in Figure 2.

The FM estimators place relatively more density immediately around the mode than OLS, which

produces a smaller range between the 25th and 75th percentiles than OLS. But the FM estimators

also have longer right tails than OLS, which increases the overall variance.

6 Conclusion

This study explores the viability of an interactive fixed effects approach to estimating the returns to

schooling employing a large panel dataset that links survey data with tax and benefit information

obtained from administrative records. SIPP provides longitudinal education information, while

administrative records from the IRS and SSA provide a long history of high-quality earnings data.

The generality of the interactive fixed effects approach over most existing approaches is apparent

in at least three dimensions: (1) Unobserved ability is allowed to be multidimensional where each
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component is characterized by its own contribution to earnings with skill prices that can vary over

time; (2) The endogeneity of schooling is accounted for through estimation of or proxying for

the skill prices that is made possible by the high-dimensional nature of the the panel without the

need to resort to external instruments or proxies for ability; (3) Individual-level heterogeneity in

the returns to schooling can be accommodated that allows us to simultaneously address the twin

sources of bias that can arise due to unmeasured skills (the omitted variable bias) and assuming

that the marginal returns to schooling are homogeneous across individuals.

The estimates from our preferred specification indicate considerably lower average marginal

returns to schooling compared to traditional methods such as OLS or 2SLS. While both afore-

mentioned sources of bias contribute to the aggregate least squares bias, our estimates point to a

relatively more important role for the bias induced by omission of time-varying returns to skills.

The two biases operate in the opposite direction serving to explain the gap in the heterogeneous

interactive fixed effects estimates and the homogeneous panel OLS estimates. Our subgroup het-

erogeneity analysis suggests larger returns for individuals born in more recent years, the presence

of “sheepskin effects” so that degree attainment can have an important impact in determining the

value of additional years of schooling, and considerable within-group heterogeneity.

Several extensions of our analysis are in order. First, it would be interesting to investigate

the extent of heterogeneity in returns at different quantiles of the earnings distribution using the

quantile interactive effects approach recently developed by Harding and Lamarche (2014). Second,

while our results indicate important differences both across and within subgroups, our sample only

includes men. Analysis of heterogeneity from a gender standpoint is a promising avenue for future

research. Third, our paper only considers cross-sectional heterogeneity but as the nonparametric

analysis of Henderson et al. (2011) documents, returns vary not only across individuals but also

across time. A limitation of our analysis in this context is that splitting the sample by time

periods would leave us with relatively few observations in each subsample (splitting by, say, half

would imply a time series dimension of seventeen for each subsample) to estimate the individual
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specific parameters. Fourth, our analysis assumes that the skill prices are homogeneous across

individuals although they are allowed to vary over time. Heckman and Scheinkman (1987) find

evidence in favor of a model where skill prices are sector-specific which suggests the presence of

a grouped factor structure for earnings which allows heterogeneity in skill prices across sectors

of the economy but possibly homogeneous for individuals within a particular sector. We leave

analyses of these and related issues as possible directions for further research.
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Figure 1: Bias Decomposition of Pooled OLS Estimate

Source: SIPP respondents linked to IRS and SSA data in the U.S. Census Bureau Gold Standard File.
Note: The darkest shaded bar for each estimator represents the pooled OLS estimate with person fixed effects and age

controls, corresponding to column (5) in Table 3. We use the decomposition β̂POLS − β̂IFEMG =
(
β̂POLS − β̂IFE

)
+

(
β̂IFE − β̂IFEMG

)
to estimate the ability and heterogeneity bias, where β̂POLS denotes the OLS estimate assuming

a homogeneous slope parameter. The same calculations are applied using CCE and CCE-2 estimates.

Figure 2: Distribution of Marginal Returns to Schooling

Note: Each line is a kernel density plot of individual returns based on the heterogeneous model for the given
estimator, based on a Gaussian kernel with a bandwidth of 0.5. Results are based on the specification in Table 5.
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Table 1: Summary Statistics

(1) (2) (3) (4) (5)
Baseline Plus Positive Plus Positive Plus Annual Plus ≥ One
Sample Earnings DER Earnings Minimum Schooling Change

After Schooling 1978-2011 Earnings During 1978-2011

A. Balanced Panel Sample

Annual Earnings 36,620 50,420 50,740 55,030 55,000
(109,200) (95,450) (97,170) (110,200) (80,490)

Years of School 13.55 14.28 14.19 14.19 14.81
(2.31) (2.11) (2.06) (2.05) (2.05)

Age 40.16 39.53 40.21 41.15 39.32
(10.94) (10.86) (10.79) (10.61) (10.6)

Black 0.085 0.060 0.059 0.052 0.049
(0.280) (0.239) (0.236) (0.222) (0.216)

Other Race 0.045 0.032 0.023 0.022 0.024
(0.208) (0.175) (0.151) (0.147) (0.160)

Hispanic 0.073 0.038 0.035 0.032 0.037
(0.260) (0.190) (0.184) (0.178) (0.191)

Foreign Born 0.089 0.040 0.026 0.027 0.033
(0.285) (0.195) (0.158) (0.164) (0.177)

Married 0.684 0.727 0.748 0.793 0.760
(0.465) (0.445) (0.434) (0.406) (0.428)

Birth Year 1954 1955 1954 1953 1955
(4.83) (4.66) (4.49) (4.04) (4.011)

Observations 1,609,000 744,000 624,000 401,000 123,000

B. 1990 Cross Section Sample

Annual Earnings 34,800 44,340 45,520 49,400 47,230
(36,610) (38,750) (39,420) (43,860) (38,610)

Years of School 13.61 14.36 14.25 14.21 14.87
(2.32) (2.09) (2.05) (2.05) (2.03)

Age 35.66 35.03 35.71 36.65 34.82
(4.83) (4.66) (4.49) (4.04) (4.01)

Black 0.084 0.059 0.059 0.050 0.056
(0.280) (0.239) (0.236) (0.222) (0.216)

Other Race 0.044 0.032 0.024 0.021 0.028
(0.208) (0.175) (0.151) (0.147) (0.160)

Hispanic 0.074 0.036 0.035 0.033 0.042
(0.260) (0.190) (0.184) (0.178) (0.191)

Foreign Born 0.088 0.039 0.024 0.029 0.028
(0.285) (0.195) (0.158) (0.164) (0.178)

Married 0.716 0.773 0.784 0.792 0.833
(0.452) (0.423) (0.410) (0.380) (0.392)

Birth Year 1954 1955 1954 1953 1955
(4.83) (4.66) (4.49) (4.04) (4.01)

Observations 47,500 22,000 18,500 12,000 3,600

Source: SIPP respondents linked to IRS and SSA data in the U.S. Census Bureau Gold Standard File.
Note: Each column reports averages and standard deviations (in parentheses) for the sample specified in the column and
table panel. Column (1) starts with a baseline sample. Columns (2)-(5) sequentially add additional sample criteria until
the final sample is shown in column (5). Table Panel A shows the balanced panel samples. Panel B shows cross-section
samples based on the 1990 cross-section values of the balanced panel samples. The number of observations and all other
statistics are rounded according to U.S. Census Bureau disclosure avoidance rules. Annual earnings are adjusted for
inflation to 1999 dollars. See section 4.2 for additional details.
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Table 2: Summary of Estimated Specifications

Specification Controls Estimator

1. yi= c+ siβ + aiρ1+a2i ρ2+ui age controls CSOLS, CS2SLS
2. yit= ci+sitβ + aitρ1+a2itρ2+uit person fixed effects, age controls POLS
3. yit= δt+sitβ + aitρ1+a2itρ2+uit time fixed effects, age controls POLS, P2SLS
4. yit= ci+sitβ + aitρ1+a2itρ2+λ′

ift+uit person and interactive fixed effects, age controls IFE, CCEP, CCEP-2
5. yit= δt+sitβ + aitρ1+a2itρ2+λ′

ift+uit time and interactive fixed effects, age controls IFE, CCEP, CCEP-2
6. yit= ci+sitβi+aitρ1i+a

2
itρ2i+uit person fixed effects, age controls OLSMG

7. yit= ci+sitβi+aitρ1i+a
2
itρ2i+λ

′
ift+uit person and interactive fixed effects, age controls IFEMG, CCEMG, CCEMG-2

Note: The estimators are abbreviated as follows: (1) CSOLS: Cross-section ordinary least squares; (2) CS2SLS: Cross-section two
stage least squares; (3) POLS: Panel ordinary least squares; (4) P2SLS: Panel two stage least squares; (5) IFE: pooled interactive
fixed effects estimator [Bai, 2009]; (6) IFEMG: mean group interactive fixed effects estimator [Song, 2013]; (7) CCEP: common
correlated effects pooled estimator [Pesaran, 2006]; (8) CCEMG: common correlated effects mean group estimator [Pesaran, 2006];
(9) OLSMG: mean group ordinary least squares estimator; (10) CCEP-2: two-step CCEP estimator [Pesaran, 2006]; (11) CCEMG-
2: two-step CCEMG estimator [Pesaran, 2006].

Table 3: Cross-Section and Panel OLS and 2SLS Estimates of the Return to Schooling for Males

(1) (2) (3) (4) (5) (6) (7)
Cross-Section Comparative Sample Panel

OLS 2SLS OLS 2SLS OLS OLS 2SLS

Years of School 0.092*** 0.134*** 0.095*** 0.138*** 0.077*** 0.105*** 0.127***
(0.004) (0.025) (0.002) (0.035) (0.005) (0.003) (0.016)

Age & Age-Squared Yes Yes Yes Yes Yes Yes Yes
Person Fixed Effects Yes No No
Year Fixed Effects No Yes Yes
First-State F-Stat 9.19 6.10 184.9
CD Test Stat. 130 7.26 5.66
Observations 3,600 3,600 22,000 22,000 123,000 123,000 123,000

Note: The dependent variable is the log of annual W-2 earnings and self-employment earnings. Columns (1)-
(4) are based on a cross-section in 1990. The comparative sample used in columns (3)-(4) is shown in Table
1 Panel B column (2). Years of school is instrumented for with quarter of birth indicator variables interacted
with year of birth indicator variables in columns (2), (4) and (7). Standard errors are shown in parentheses and
heteroskedasticity-robust for cross-section and clustered at the person level for panel. Significance is as follows:
one-percent=***, five-percent=**, and ten-percent=*.
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Table 4: Common Factor Model Estimates of the Return to Schooling for Males - Pooled Model

(1) (2) (3) (4) (5) (6)
IFE IFE CCEP CCEP CCEP-2 CCEP-2

Years of School 0.020*** 0.026** 0.038*** 0.037*** 0.023*** 0.024***
(0.003) (0.003) (0.004) (0.006) (0.004) (0.004)

Age & Age-Squared Yes Yes Yes Yes Yes Yes
Person Fixed Effects Yes No Yes No Yes No
Year Fixed Effects No Yes No Yes No Yes
Observations 123,000 123,000 123,000 123,000 123,000 123,000

Note: Columns (1)-(2) are based on Interactive Fixed Effects (IFE) (Bai, 2009) with 8 and
7 factors, respectively, selected by the ICp1 procedure in Bai and Ng (2002). Columns (3)-(4)
are based on Common Correlated Effects pooled (CCEP) (Pesaran, 2006). Columns (5)-(6)
are based on the two-step CCE procedure with 7 and 8 factors, respectively, selected by the
ICp1 procedure in Bai and Ng (2002) applied to residuals based on the CCEP estiamtes. IFE
and CCE standard errors are calculated following Bai (2009) and Pesaran (2006), respectively.
Significance is as follows: one-percent=***, five-percent=**, and ten-percent=*.

Table 5: Common Factor Model Estimates of the Return to Schooling for Males - Heterogeneous
Model

(1) (2) (3) (4)
OLSMG IFEMG CCEMG CCEMG-2

Years of School 0.078*** 0.028*** 0.044*** 0.041***
(0.006) (0.003) (0.006) (0.006)

Age & Age-Squared Yes Yes Yes Yes
Person Fixed Effects Yes Yes Yes Yes
Su-Chen Slope Test 34.19 21.6 21.48
Ando-Bai Slope Test 5324 1422 -73.63
Observations 123,000 123,000 123,000 123,000

Percent of individuals with negative returns 0.392 0.462 0.428 0.442

Note: The panel OLS, IFE, CCEP, and CCEP-2 estimators from Table 3 and 4 are replaced
with versions that allow regression coefficients to vary across individuals (Pesaran, 2006; Pesaran
and Smith, 1996; Song, 2013). The individual-level regression coefficients are then averaged
across all individuals to produce a “mean group” (MG) result. IFEMG estimates are based on
4 factors for columns (2), selected by the ICp1 procedure in Bai and Ng (2002). Two-step CCE
estimates are based on 4 factors for columns (4), selected by the ICp1 procedure in Bai and Ng
(2002) applied to residuals based on the CCEMG estimates. The Su-Chen and Ando-Bai slope
homogeneity tests are based on Su and Chen (2013) and Ando and Bai (2015).
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Table 6: Bias Associated with OLS (Pooled and Heterogeneous) and 2SLS (Pooled) Estimates, Due
to Common Factor Structure

(1) (2) (3) (4) (5) (6)
Factor skill 1 Factor skill 2 Factor skill 3 Factor skill 4 All others Total

IFE

A. Covariates: Age controls and person fixed effects
OLS 0.037 0.004 0.011 0.002 0.002 0.057

B. Covariates: Age controls and year fixed effects
OLS 0.080 -0.001 -0.001 0.0005 0.0002 0.079
2SLS 0.075 0.025 0.001 -0.001 -0.0001 0.101

CCEP

A. Covariates: Age controls and person fixed effects
OLS 0.023 0.013 0.003 0.001 0.001 0.041

B. Covariates: Age controls and year fixed effects
OLS 0.068 -0.0005 0.0005 0.0004 0.0001 0.068
2SLS 0.078 0.012 0.0003 -0.0001 -0.00003 0.090

CCEP-2

A. Covariates: Age controls and person fixed effects
OLS 0.042 0.002 0.006 0.002 0.002 0.054

B. Covariates: Age controls and year fixed effects
OLS 0.079 0.0005 0.001 0.001 0.0003 0.081
2SLS 0.084 0.019 0.0004 -0.0001 -0.000008 0.103

IFEMG

A. Covariates: Age controls and intercept
OLSMG 0.047 0.003 -0.0008 0.0006 0.050

CCEMG

A. Covariates: Age controls and intercept
OLSMG 0.017 0.006 0.006 0.005 0.034

CCEMG-2

A. Covariates: Age controls and intercept
OLSMG 0.018 0.008 0.006 0.005 0.037

Note: In the top three panels with pooled specifications, bias estimates for OLS are based on the
part of years of school that is unexplained by the covariates listed in the panel title. Similarly, bias
estimates for 2SLS are based on the part of quarter of birth indicators interacted with year of birth
indicators that is unexplained by the other covariates listed in the panel title. The OLS and 2SLS
estimates correspond to the specifications in Table 3 that include the covariates listed in the panel
title. The common factors in the IFE table panels are based on the IFE results, and in the CCE panels
are based on the principal components procedure applied to residuals from the CCEP estimates in
Table 4 that correspond to the specifications in the panel titles. Column (5) includes common factors
up to the number indicated in Table 4 and 5. In the bottom three panels with heterogeneous models,
bias estimates are based on the common factor estimates from the heterogeneous factor model results
in Table 5. The CCE common component estimates are based on applying principal components to
ηit = yit − sitβ̂CCE .
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Appendices

A Bias Derivations

A.1 Omitted Ability Bias

We employ the IFE and CCE estimators to derive analytical expressions for and estimates of the

biases induced by the OLS and IV estimators assuming that the true model is given by (1) and

(2) in section 3.1. The interactive effects framework allows us to not only obtain estimates of the

aggregate ability bias but also the bias attributable to each of the ability components. To simplify

the exposition, we consider a setup where ability is two-dimensional (r = 2) and the regression

coefficients are homogeneous.32 The model is given by

yit = sitβ +λ1i f1t +λ2i f2t +uit (A.1)

where yit (sit) is the residual obtained by regressing log wages (schooling) on the set of controls

and a full set of time and person dummies. Note that given the set of dummies included, the

means of yit and sit across i and t as well as their overall means (over i and t) are all zero. Let

c j,it = λ ji f jt be the common component associated with factor j ( j = 1,2).

The probability limit of the OLS estimator can be expressed as

p lim β̂OLS = [Var(sit)]
−1Cov(sit ,yit)

= β +[Var(sit)]
−1Cov(sit ,c1,it)+ [Var(sit)]

−1Cov(sit ,c2,it)

= β +B1ols +B2ols (A.2)

32The ability bias associated with the OLSMG estimator is derived in the Appendix A3.
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where

Var(sit) = plimN,T→∞(NT )−1
∑
t

∑
i

s2
it (A.3)

Cov(sit ,c j,it) = plimN,T→∞(NT )−1
∑
t

∑
i

sitλ ji f jt (A.4)

In (A.2), B1ols can be interpreted as the bias in the OLS estimator induced by f1 and B2ols the bias

induced by f2. The aggregate OLS bias is given by

Bias(β̂OLS) = p lim β̂OLS−β = B1ols +B2ols = Bols

Now consider a 2SLS estimator based on a set of K instruments zit (as before, zit is the residual

from regressing the instruments on the set of controls and a full set of time and person dummies.)

where Cov(zit,k,sit) 6= 0 where k = 1, ...,K. Define the (T × 1) vector Yi = (Yi1, ...,YiT )
′, the (T ×

K) matrix Zi = (zi1, ...,ziT )
′ and the (NT ×K) matrix Z = (Z′1, ...,Z

′
N)
′. The first stage estimate is

Π̂ =
(
∑

N
i=1 Z′iZi

)−1
∑

N
i=1 Z′iSi. The 2SLS estimate is

β̂2SLS =

(
Π̂
′

N

∑
i=1

Z′iZiΠ̂

)−1(
Π̂
′

N

∑
i=1

Z′iYi

)

Denote Ŝi = ZiΠ̂. Then we have

p lim β̂2SLS = β +[p lim(NT )−1
N

∑
i=1

Ŝ′iŜi]
−1


p lim(NT )−1 [

∑i Ŝ′iF1λ1i
]

+p lim(NT )−1 [
∑i Ŝ′iF2λ2i

]


= β +B1iv +B2iv (A.5)

In (A.5), B1iv can be interpreted as the bias in the 2SLS estimator induced by f1 and B2iv the bias
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induced by f2. The aggregate 2SLS bias is given by

Bias(β̂2SLS) = p lim β̂2SLS−β = B1iv +B2iv = Biv

The 2SLS estimator has a larger aggregate bias than the OLS estimator if Biv > Bols or

B2iv−B2ols > B1ols−B1iv (A.6)

In accordance with our empirical results, we assume that B1ols+B2ols = Bols > 0. We consider the

following two cases depending on the magnitude and direction of the component-specific biases

that turn out to be relevant in our context:

• Case A: B1ols > 0, B2ols < 0 such that B1ols > |B2ols|. Then β̂OLS is upward biased with the

positive bias induced by f1 dominating the negative bias induced by f2:

Bias(β̂OLS) = p lim β̂OLS−β = B1ols +B2ols = Bols > 0

The inequality (A.6) is consistent with any of the following four scenarios:

1. IV is effective in reducing the magnitude of the bias from both components: |B2iv|< |B2ols| ,

|B1iv|< B1ols.

2. IV is effective in reducing the magnitude of the bias from component 1 only: |B2iv| >

|B2ols| , |B1iv|< B1ols.

3. IV is effective in reducing the magnitude of the bias from component 2 only: |B2iv| <

|B2ols| , B1iv > B1ols.

4. IV is completely ineffective: |B2iv|> |B2ols| , B1iv > B1ols.
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In general, if ability is multidimensional and one of its components is negatively correlated

with schooling, it is possible for the aggregate 2SLS bias to exceed the aggregate OLS bias

regardless of whether the instruments are fully, partially or not effective in reducing the magnitude

of the bias in any or all of its components.

• Case B: B1ols > 0, B2ols > 0

The inequality (A.6) is consistent with any of the following three scenarios:

1. IV is effective in reducing the magnitude of the bias from component 1 only: B2iv > B2ols,

B1iv < B1ols.

2. IV is effective in reducing the magnitude of the bias from component 2 only: B2iv < B2ols,

B1iv > B1ols.

3. IV is completely ineffective: B2iv > B2ols, B1iv > B1ols.

In contrast to case A, if each of the ability components induce a positive bias in the OLS

estimates, the instruments can be (at most) effective at reducing the bias associated with only a

subset of the components at the expense of exacerbating the bias associated with the remaining

components, for (A.6) to hold.

Under the factor model framework (A.1), each of the bias terms in (A.2) and (A.5) can be

consistently estimated. This is because even though the factors and their loadings are not separately

identified, their product, i.e., the common components (c j,it) are. The estimated biases can be

obtained as follows:

B̂1ols = [SVar(sit)]
−1SCov(sit , ĉ1,it)

B̂2ols = [SVar(sit)]
−1SCov(sit , ĉ2,it)

B̂1iv = [SVar(Ŝi)]
−1SCov(Ŝi, F̂1λ̂1i)

B̂2iv = [SVar(Ŝi)]
−1SCov(Ŝi, F̂2λ̂2i)
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where, for j = 1,2, ĉ j,it = λ̂ ji f̂ jt are the Bai (2009) estimates of the common components and

SVar(sit), SVar(Ŝi), SCov(Ŝi, F̂jλ̂ ji), SCov(sit , ĉ j,it) denote the sample variance and sample co-

variances respectively, which are the sample analogs of the quantities defined in (A.3) and (A.4).

Specifically, these quantities are computed as follows:

SVar(sit) = (NT )−1
∑
t

∑
i

s2
it (A.7)

SVar(Ŝi) = (NT )−1
N

∑
i=1

Ŝ′iŜi (A.8)

SCov(Ŝi, F̂jλ̂ ji) = (NT )−1

[
∑

i
Ŝ′iF̂jλ̂ ji

]
(A.9)

SCov(sit , ĉ j,it) = (NT )−1
∑
t

∑
i

sit λ̂ ji f̂ jt = T−1
∑
t

{
N−1

∑
i

sit λ̂ ji f̂ jt

}
(A.10)

Note that in (A.7-A.10), we do not need to subtract the means since the variables already have

mean zero. Note that SCov(sit , ĉ j,it) is the average (over time) of the cross-sectional correlation

between sit and ĉ j,it . Each of the terms in (A.7-A.10) can be computed based on our data and factor

model estimates to examine the extent to which the component-specific biases offset or reinforce

each other.

The CCE approach does not directly estimate the factors so we employ the following two-

step procedure to estimate the ability bias components: (1) Obtain the residuals ηit = yit− sit β̂CCE ,

where β̂CCE is either the CCEP or CCEMG estimator depending on whether one estimates a pooled

or heterogeneous model; (2) Given a choice of the number of factors, estimate the common factor

model ηit = λ ′i ft +uit by principal components. Once the factor structure estimates are obtained,

the biases attributable to each of the skill components can be estimated as discussed for the IFE

estimator. Note that since the CCE procedure proxies for the factors using cross-section averages

of the variables, the aggregate bias estimated using the two-step procedure will not necessarily

equal the difference between the OLS and the CCEP (or CCEMG). Our empirical results indicate
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that the difference is, however, minimal. For the CCEP-2 and CCEMG-2 estimates, the biases can

be computed in the same way as for IFE and IFEMG, respectively.

A.2 Heterogeneity Bias

Heterogeneity bias arises when one estimates a pooled specification when the regression coeffi-

cients are in fact heterogeneous across the cross-section units. To analyze this source of bias, we

consider the IFE estimator of Bai (2009). We can write (1) as

Yi = Siβi +Fλi +Ui (A.11)

with Yi,Si,Ui being (T×1) vectors defined as Yi =(yi1, ...,yiT )
′, Si =(si1, ...,siT )

′, Ui =(ui1, ...,uiT )
′

and F = ( f1, ..., fT )
′ being the (T × r) matrix of common factors. Here we interpret yit (sit) as the

part of log wages (schooling) unexplained by the controls wit and person/time fixed effects.

The IFE estimator is given by

β̂IFE =

(
N

∑
i=1

S′iMF̂Si

)−1( N

∑
i=1

S′iMF̂Yi

)
(A.12)

where MF̂ = IT − F̂
(
F̂ ′F̂

)−1 F̂ ′, and F̂ is the principal components (PC) estimate of F .

Under the heterogeneous model (A.11), we can write (A.12) as

β̂IFE =

(
∑

i
S′iMF̂Si

)−1

∑
i

S′iMF̂ (Siβi +Fλi +Ui) =

(
∑

i
S′iMF̂Si

)−1

∑
i

S′iMF̂
(
Siβi +(F− F̂)λi + F̂λi +Ui

)
=

(
∑

i
S′iMF̂Si

)−1

∑
i

S′iMF̂Siβi +

(
∑

i
S′iMF̂Si

)−1(
∑

i
S′iMF̂(F− F̂)λi +∑

i
S′iMF̂Ui

)

'
N,T large

(
∑

i
S′iMF̂Si

)−1

∑
i

S′iMF̂Siβi

where the approximation in the last line holds since the other terms are negligible for large N,T [Bai,
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2009]. This gives

β̂IFE '
N,T large

∑
i

ωiβi (A.13)

where ωi =
(
∑i S′iMF̂Si

)−1 S′iMF̂Si is the weight on the individual i’s return (note that ∑i ωi =

1). This suggests that β̂IFE is likely to exceed β̂IFEMG (since β̂IFEMG is an estimate of N−1
∑i βi)

if there exists positive correlation between βi and ωi, i.e., marginal returns are higher for those

individuals who have higher time variation in the unexplained portion of schooling. This can

be verified empirically by computing the cross-sectional correlation between β̂i (the individual-

specific IFE estimate) and ωi.

A.3 Bias in the OLS Mean Group [OLSMG] Estimator

The aggregate bias in the OLSMG estimator (based on the IFE approach) can be expressed as

β̂OLSMG− β̂IFEMG = N−1
∑

i

{(
∑
t

S2
it

)−1

∑
t

Sit λ̂
′
i f̂t

}
(A.14)

=
r

∑
j=1

[
N−1

∑
i

{(
∑
t

S2
it ∑

t
Sit λ̂ ji f̂ jt

)−1
}]

assuming r common factors. In (A.14), λ̂i = (λ̂1i, λ̂2i, ..., λ̂ri)
′ so that λ̂ ji represents the j-th factor

loading for individual i. The contribution of the j-th factor to the aggregate bias is therefore

N−1
∑

i

{(
∑
t

S2
it ∑

t
Sit λ̂ ji f̂ jt

)−1
}

For the CCE approach, since the factors are not directly estimated, we follow a two-step procedure

to estimate the component-specific biases as described in Appendix A1. The only difference is that

the residuals in the first step are now computed using β̂CCEMG.
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A.4 Bias with Quadratic Schooling Terms

The general interactive fixed effects model with quadratic schooling terms is given by

yit = sitβ1 + s2
itβ2 + vit (A.15)

vit = λ
′
i Ft +uit (A.16)

Let B =


β1

β2

 and W =

[
s s2

]
, therefore B̂OLS = (W ′W )−1W ′Y =


β̂1

β̂2

. The OLS marginal

effect of schooling = β̂1 +2β̂2s̄ = B̂′OLSS̄s, where S̄s =


1

2s̄

. Thus, the OLS bias equals to

[
E(B̂OLS)−B

]′ S̄s (A.17)

and
[
E(B̂OLS)−B

]
can be estimated by (W ′W )−1W ′Ĉ where W ′Ĉ = ∑wit ĉit and ĉit = λ̂ ′i F̂t .

B Accounting for Experience

Consider the pooled specification

yit = ci + sitβ + eitρ1 + e2
itρ2 +λi

′ ft +uit (A.18)

where eit denotes actual experience and sit denotes schooling. Let eit = ei0 + t, where ei0 is initial

experience and t is the time trend. Therefore,

yit = ci + sitβ +(ei0 + t)ρ1 +(ei0 + t)2
ρ2 +λi

′ ft +uit
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or,

yit = (ci + ei0ρ1 + e2
i0ρ2)+(2ei0ρ2)t +(ρ1t +ρ2t2)+ sitβ +λi

′ ft +uit

or,

yit = ρ̃1i + ρ̃2it + δ̃t + sitβ +λi
′ ft +uit (A.19)

where

ρ̃1i = ci + ei0ρ1 + e2
i0ρ2, ρ̃2i = 2ei0ρ2

δ̃t = ρ1t +ρ2t2

Thus, from (A.19) in the pooled model, besides time fixed effect, we should include person fixed

effects and person-specific linear trend, which is equivalent to a pooled model that includes person

fixed effects, age and age-squared terms instead of the person-specific linear trend.

In the heterogeneous model,

yit = ci + sitβi + eitρ1i + e2
itρ2i +λi

′ ft +uit

or

yit = ρ̆1i + ρ̆2it +ρ2it2 + sitβi +λi
′ ft +uit (A.20)

where

ρ̆1i = ci + ei0ρ1i + e2
i0ρ2i, ρ̆2i = ρ1i +2ei0ρ2i

From (A.20), we should include person fixed effects and person-specific quadratic trend, which is

equivalent to a heterogeneous specification that includes person fixed effects, age and age-squared

terms instead of the person-specific quadratic trend.
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C Data: Schooling Variable Construction

We construct a longitudinal years of schooling variable based on the SIPP education information

that includes highest education level completed (‘no high school degree’, ‘high school degree’,

‘some college’, ‘college degree’, and ‘graduate degree’), the year during which high school was

completed, the year during which post-high school education began, the year during which post-

high school education ended, and the year during which a bachelor’s degree was earned. First,

individuals were assigned one of the five highest-level-completed values for each year.33 All

individuals were assigned ‘no high school degree’ before the year they graduated high school

and ‘high school degree’ beginning in their graduation year. Individuals whose highest completed

level was ‘some college’ and thus did not obtain a bachelor’s degree were assigned ‘some college’

beginning in the year their post-high school education ended. Individuals who obtained at least a

college degree were assigned ‘college degree’ beginning in the year they obtained their bachelor’s

degree. Individuals who obtained a graduate degree were assigned ‘graduate degree’ beginning

in the year their post-high school education ended.34 Then, based on highest level completed at

each year, individuals were assigned a years of schooling value. Individuals with ‘no high school

degree’ in a given year were assigned 10 years of school, individuals with ‘high school degree’

were assigned 12 years, individuals with ‘some college’ were assigned 14 years, individuals with

‘college degree’ were assigned 16 years, and individuals with ‘graduate degree’ were assigned 18

years.35

Another approach is to measure actual years spent in school, regardless of completed educa-

33‘Some college’ includes anything less than a bachelor’s degree. Thus it includes both individuals with some years
of college but no degree and individuals with an associate’s degree.

34Note that the variable for the year post-high school education ended could be before, the same as, or after the
year a bachelor’s degree was earned. If a person started college but did not obtain a bachelor’s degree, then it indicates
when the person dropped out or obtained a shorter degree. If a person obtained a bachelor’s and then stopped, then it is
the same as the bachelor’s year variable. If the person obtained a graduate degree, then it indicates when they finished
graduate school.

35Assigning years of school based on highest level completed is common in the literature (e.g., Heckman, Lochner,
and Todd, 2006; Henderson et al., 2011).
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tion levels. This is not feasible in the U.S. Census Bureau GSF as it is in some other datasets such

as the NLSY, although it is not obvious that this approach would be preferable: variation in years of

school that is independent of completed education levels (e.g., individuals who complete college in

three versus five years) might introduce more measurement error or bias into the variable. However,

we did want to attempt to smooth the discrete jumps described above for two reasons. First, the

scheme introduces measurement error by explicitly missing some variation in years of school. For

example, it misses the transition through high school by only assigning 10 years for any year before

high school degree completion. It also misses the distinction between individuals working with a

high school degree with versus without college experience, because the years of schooling variable

does not increase until the individual either finishes their post-high school schooling or obtains a

bachelor’s degree. Second, because we have to limit the main sample to individuals with at least

one change in schooling (and further limit to individuals with at least two changes in schooling

in Appendix D), this allows us to retain a few more individuals. We therefore make the following

two adjustments to smooth the years of schooling variable: (1) we change years of schooling from

10 to 11 the year before a high school degree was finished, which captures progression from 10th

grade through 12th36; and (2) we change years of schooling from 12 to 13 beginning the year when

an individual begins their post-high school education, which captures the distinction between an

individual working with a high school degree with versus without college experience. Our main

sample of analysis in Panel A column (5) of Table 1 has the following distribution of within-person

changes in years of schooling: 250 changes from 10 years to 11; 500 changes from 11 to 12; 900

changes from 12 to 13; 1,500 changes from 13 to 14; 1,100 changes from 13 to 16; and 900 changes

from 16 to 18.
36Our sample is limited to individuals at least 16 years of age, so we do not expect to capture many individuals in

grades earlier than 10th.
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D Robustness Checks

D.1 Robustness to Alternative Specifications

In this section we discuss robustness of the main results to alternative specifications. Our main

results are based on a linear years of schooling and quadratic age specification. This specification

is the traditional model originating from Mincer (1974). However, numerous studies have indicated

that this specification may not be flexible enough and higher-order terms in schooling and/or

experience may be needed (Murphy and Welch, 1990; Heckman, Lochner, and Todd, 2006; Cho

and Phillips, 2018). These papers provide evidence supporting the use of up to a quadratic term in

years of schooling and a quartic term in experience.37

The robustness of our main results in Tables 3-5 to the inclusion of a quadratic years of

schooling term and/or a quartic age term are shown in Tables D1-D3, respectively. The sample

for specifications that include a quadratic in years of schooling is further restricted to individu-

als with at least two changes in years of schooling so that we can estimate quadratic terms for

the individual-level regressions associated with the heterogeneous models. The marginal returns

shown in the tables for specifications with a quadratic years of schooling term are evaluated at the

mean level of schooling in the whole sample for the pooled models. For the heterogeneous models,

we compute each individual’s return based on their mean schooling, and then average the returns

across individuals. The bias estimates according to the derivation in Appendix A4 are similar to

the results in Table 6 and available upon request. All of the results are very similar to those in the

main text, suggesting that our findings are not sensitive to the assumption of a linear relationship

between schooling and earnings or a quadratic relationship between age and earnings.

37Notably, however, Cho and Phillips (2018) find that the original Mincer specification is appropriate when no
additional explanatory variables are included beyond years of school and experience, as is the case in our specifications.
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Table D1: OLS and 2SLS Specification Robustness

(1) (2) (3) (4) (5) (6) (7)
Cross-Section Comparative Sample Panel

OLS 2SLS OLS 2SLS OLS OLS 2SLS

A. Quadratic Schooling and Quadratic Age

Years of School 0.078*** 0.124*** 0.092*** 0.112*** 0.069*** 0.093*** 0.101***
(0.006) (0.021) (0.002) (0.038) (0.007) (0.005) (0.017)

Person Fixed Effects Yes No No
Year Fixed Effects No Yes Yes
First-State F-Stat 3.12 6.10 188.3
CD Test Stat. 71.43 -2.13 -2.12
Observations 1,300 1,300 22,000 22,000 45,000 45,000 45,000

B. Linear Schooling and Quartic Age

Years of School 0.091*** 0.125*** 0.095*** 0.151*** 0.073*** 0.105*** 0.127***
(0.004) (0.027) (0.002) (0.035) (0.005) (0.003) (0.016)

Person Fixed Effects Yes No No
Year Fixed Effects No Yes Yes
First-State F-Stat 7.89 1.13 182.4
CD Test Stat. 136.9 7.18 5.68
Observations 3,600 3,600 22,000 22,000 123,000 123,000 123,000

C. Quadratic Schooling and Quartic Age

Years of School 0.077*** 0.122*** 0.092*** 0.134*** 0.060*** 0.092*** 0.100***
(0.006) (0.023) (0.002) (0.038) (0.007) (0.005) (0.017)

Person Fixed Effects Yes No No
Year Fixed Effects No Yes Yes
First-State F-Stat 2.58 1.13 184.19
CD Test Stat. 71.25 -2.31 -2.29
Observations 1,300 1,300 22,000 22,000 45,000 45,000 45,000

Note: Each table panel shows robustness of the results in Table 3 to extending the specification to include a
quadratic in years of schooling and/or a quartic in age. See Table 3 for additional details.
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Table D2: Common Factor Pooled Model Robustness

(1) (2) (3) (4) (5) (6)
IFE IFE CCEP CCEP CCEP-2 CCEP-2

A. Quadratic Schooling and Quadratic Age

Years of School 0.026*** 0.023*** 0.031*** 0.035*** 0.025*** 0.026***
(0.006) (0.006) (0.008) (0.008) (0.008) (0.007)

Person Fixed Effects Yes No Yes No Yes No
Year Fixed Effects No Yes No Yes No Yes
Observations 45,000 45,000 45,000 45,000 45,000 45,000

B. Linear Schooling and Quartic Age

Years of School 0.020*** 0.026*** 0.037*** 0.036*** 0.024*** 0.024***
(0.003) (0.003) (0.004) (0.010) (0.004) (0.005)

Person Fixed Effects Yes No Yes No Yes No
Year Fixed Effects No Yes No Yes No Yes
Observations 123,000 123,000 123,000 123,000 123,000 123,000

C. Quadratic Schooling and Quartic Age

Years of School 0.026*** 0.029*** 0.031*** 0.034*** 0.026*** 0.025***
(0.005) (0.005) (0.008) (0.009) (0.009) (0.007)

Person Fixed Effects Yes No Yes No Yes No
Year Fixed Effects No Yes No Yes No Yes
Observations 45,000 45,000 45,000 45,000 45,000 45,000

Note: Each table panel shows robustness of the results in Table 4 to extending the specifica-
tion to include a quadratic in years of schooling and/or a quartic in age. Columns (1)-(2) are
based on 7 and 7 factors in Panel A; 8 and 7 factors in Panel B; and 7 and 6 factors in Panel
C, selected by the ICp1 procedure in Bai and Ng (2002). Columns (5)-(6) are based on 7 and
8 factors in Panel A; 7 and 8 factors in Panel B; and 7 and 8 factors in Panel C, selected by
the ICp1 procedure in Bai and Ng (2002) applied to residuals based on the CCEP estimates.
See Table 4 for additional details.
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Table D3: Common Factor Heterogeneous Model Robustness

(1) (2) (3) (4)
OLSMG IFEMG CCEMG CCEMG-2

A. Quadratic Schooling and Quadratic Age

Years of School 0.101*** 0.030** 0.035** 0.025*
(0.013) (0.013) (0.014) (0.015)

Person Fixed Effects Yes Yes Yes Yes
Su-Chen Slope Test 15.39 12.26 12.16
Ando-Bai Slope Test 4,009 1,331 -51.37
Observations 45,000 45,000 45,000 45,000

Percent of individuals with negative returns 0.432 0.489 0.482 0.471

B. Linear Schooling and Quartic Age

Years of School 0.067*** 0.023*** 0.030*** 0.029***
(0.006) (0.007) (0.006) (0.006)

Person Fixed Effects Yes Yes Yes Yes
Su-Chen Slope Test 27.49 21.5 21.39
Ando-Bai Slope Test 7,536 1,724 -84.91
Observations 123,000 123,000 123,000 123,000

Percent of individuals with negative returns 0.410 0.466 0.464 0.472

C. Quadratic Schooling and Quartic Age

Years of School 0.087** 0.034*** 0.032** 0.030*
(0.013) (0.013) (0.014) (0.017)

Person Fixed Effects Yes Yes Yes Yes
Su-Chen Slope Test 20.35 12.26 12.21
Ando-Bai Slope Test 5,734 1,545 -57.41
Observations 45,000 45,000 45,000 45,000

Percent of individuals with negative returns 0.461 0.483 0.494 0.492

Note: Each table panel shows robustness of the results in Table 5 to extending the specification
to include a quadratic in years of schooling and/or a quartic in age. Column (2) is based on 3
factors in Panel A; 4 factors in Panel B; and 2 factors in Panel C, selected by the ICp1 procedure
in Bai and Ng (2002). Column (4) is based on 3 factors in Panel A; 3 factors in Panel B; and
3 factors in Panel C, selected by the ICp1 procedure in Bai and Ng (2002) applied to residuals
based on the CCEMG estimates. Specifications with a quadratic in years of schooling are based
on a sample of individuals with at least two changes in schooling, in order to identify quadratic
terms from individual-level regressions. See Table 5 for additional details.
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D.2 Time-Varying Returns to Demographics as Proxies for Interactive Fixed Effects

Our interpretation of the interactive fixed effects structure as capturing unobserved skills or abilities

hinges on the assumption that there are no suitable proxies to fully account for their effects.

Alternatively, such a structure could be potentially capturing time-varying returns to time invariant

individual-specific characteristics such as demographics, or these characteristics could serve as

useful proxies for individual skills or abilities. To investigate this possibility, we estimated the

following specification with demographic-by-year fixed effects, denoted d′iθt , by OLS:

yit = δt + sitβ +w′itγ +d′iθt + vit

The estimates, reported in columns (1)-(2) in Table D4 below, are only marginally smaller than

those reported in columns (5)-(6) in Table 3, which strengthens our interpretation that the interac-

tive fixed effects models capture unobservable skills/abilities that cannot be accounted for using

observable characteristics.

Table D4: Time-Varying Returns to Demographics as Proxies for Interactive Fixed Effects

(1) (2)

OLS OLS

Years of School 0.066*** 0.098***
(0.003) (0.005)

Age & Age-Squared Yes Yes
Person Fixed Effects Yes No
Year Fixed Effects No Yes
Demo-by-Year Fixed Effects Yes Yes
CD test stat 23.37 7.79
Observations 123,000 123,000

Note: Columns (1)-(2) are identical to columns (5)-(6) in Table 3, except with demographic-by-year fixed effects
included. These additional fixed effects are intended to proxy for the interactive fixed effects structure. That is,
whereas a general version of the pooled interactive fixed effects approach estimates yit = δt + sitβ +w′itγ +λ ′i ft +
uit , here we estimate yit = δt +sitβ +w′itγ +d′iθt +vit . The demographic variables included in di are race, Hispanic
status, foreign born status, marital status, birth year, and state of residence in the SIPP survey.
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